Skip to main content

The Role of Information in Inquiry-Based Learning in a Remote Lab on Optical Spectrometry

  • Chapter
  • First Online:
The Role of Laboratory Work in Improving Physics Teaching and Learning

Abstract

When expensive, complex, or challenging experimental set-ups are unavailable or impracticable, virtual and remote labs can serve as an alternative that promotes practical experimental skill development and discovery-based learning. Virtual and remote labs enable students to take responsibility for demonstration experiments in an active and yet harmless way. The analysis of spectra is fundamental to our modern understanding of wave optics and colour perception. For this reason, every student should have the opportunity to conduct their own optical emission experiments. Since spectrometers are expensive and accurate calibration is necessary to achieve high quality spectra of energy distribution, we developed a remotely controlled laboratory on optical spectrometry (http://myrcl.net links to multilingual version). Additionally, a virtual lab version is available for off-line use (http://virtualremotelab.net). With this tools, many different objectives can be realized by students. Banchi and Bell (2008) describe four levels of inquiry in activities with decreasing predefined structure: confirmation inquiry, structured inquiry, guided inquiry and open inquiry. Based on this classification, we developed different learning scenarios that allow students to introduce themselves to atomic physics, to compare and to rate customary light sources and finally to choose light sources for distinct lighting situations. Since these topics are new to the students, they need additional information (e.g., on the experimental set-up). This leads to the question of which domain specific knowledge should be offered to the students at what time? Moreover, how should the information be presented? Students clearly need additional information on the set-up of the proposed experiment and control. The literature review has suggested presenting the information during the learning phase. When this is not possible, the learners should be forced to read the additional information in advance. Perceived reading attentiveness differed for information types (structural-attributive, functional-cybernetic, pragmatic). Effects on performance and knowledge acquisition is subject to future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, P. A., Judy, J. E.: The Interaction of Domain-Specific and Strategic Knowledge in Academic Performance. Review of Educational Research 58(4), 375–404 (1988). https://doi.org/10.3102/00346543058004375

    Article  Google Scholar 

  • Ayres, P.: Using subjective measures to detect variations of intrinsic cognitive load within problems. Learning and Instruction 16(5), 389–400 (2006). https://doi.org/10.1016/j.learninstruc.2006.09.001

    Article  Google Scholar 

  • Bamberger, R., Rabin, A. T.: New Approaches to Readability: Austrian Research. The Reading Teacher 37(6), 512–519 (1984)

    Google Scholar 

  • Banchi, H., Bell, R. L.: The Many Levels of Inquiry. Science and Children 46, 26–29 (2008)

    Google Scholar 

  • Bandura, A.: Self-efficacy: The exercise of control. Freeman, New York, NY (1997).

    Google Scholar 

  • Baumert, J., Köller, O.: Unterrichtsgestaltung, verständnisvolles Lernen und multiple Zielerreichung im Mathematik- und Physikunterricht der gymnasialen Oberstufe. In J. Baumert, W. Bos, R. Lehmann (eds.), TIMSS/III: Bd. 2. Mathematische und physikalische Kompetenzen am Ende der gymnasialen Oberstufe. Leske + Budrich, Opladen (2000).

    Google Scholar 

  • Bereiter, C., Scardamalia, M.: Intentional Learning as a Goal of Instruction. In L. B. Resnick (ed.), Knowing, learning, and instruction. Essays in honor of Robert Glase, pp. 361–392. Hillsdale, NJ: Erlbaum (1989)

    Google Scholar 

  • Bransford, J. D., Brown, A. L., Anderson, J. R., Gelman, R., Glaser, R., Greenough, W. T., Phillips, M. J.: How People Learn: Brain, Mind, Experience, and School: Expanded Edition. National Academy Press, Washington, D.C. (2000)

    Google Scholar 

  • Bratfisch, O., Borg, G., Dornič, S.: Perceived Item-Difficulty in Three Tests of Intellectual Performance Capacity. In Reports from the Institute of Applied Psychology (No. 29). Stockholm (1972)

    Google Scholar 

  • Brown, A. L., DeLoache, J. S.: Skills, plans, and self-regulation. In R. S. Siegler (ed.), Children’s Thinking: What Develops?, pp. 3–36. Erlbau, Hillsdale, NJ (1978)

    Google Scholar 

  • Brünken, R., Plass, J. L., Leutner, D.: Direct Measurement of Cognitive Load in Multimedia Learning. Educational Psychologist 38(1), 53–61 (2003). https://doi.org/10.1207/S15326985EP3801_7

    Article  Google Scholar 

  • Butler, D. L., Winne, P. H.: Feedback and Self-Regulated Learning: A Theoretical Synthesis. Review of Educational Research 65(3), 245–281 (1995). https://doi.org/10.3102/00346543065003245

    Article  Google Scholar 

  • Crouch, C. H., Mazur, E.: Peer Instruction: Ten Years of Experience and Results. American Journal of Physics 69, 970–977 (2001). https://doi.org/10.1119/1.1374249

    Article  ADS  Google Scholar 

  • de Jong, T., van Joolingen, W. R.: Scientific Discovery Learning With Computer Simulations of Conceptual Domains. Review of Educational Research, 68(2) 179–201 (1998). https://doi.org/10.3102/00346543068002179

    Article  Google Scholar 

  • Deci, E. L., Ryan, R. M.: Die Selbstbestimmungstheorie der Motivation. Zeitschrift für Pädagogik, 39(2), 223–238 (1993)

    Google Scholar 

  • Duit, R., Tesch, M.: On the role of the experiment in science teaching and learning – Visions and the reality of instructional practice. In M. Kalogiannakis, D. Stavrou, P. G. Michaelides (eds.) HSci 2010. 7th International Conference Hands-on Science “Bridging the Science and Society gap”, July 25-31, 2010, Greece. Rethymno: The University of Crete (2010)

    Google Scholar 

  • Flesch, R.: A new readability yardstick. Journal of Applied Psychology 32(3), 221–233 (1948). https://doi.org/10.1037/h0057532

    Article  Google Scholar 

  • Flückiger, F. Beiträge zur Entwicklung eines vereinheitlichten Informations-Begriffs (Dissertation). Universität Bern, Bern (1995).

    Google Scholar 

  • Flückiger, F.: Towards a unified concept of information: Presentation of a new approach. World Futures: Journal of General Evolution 49(3-4), 309–320 (1997). https://doi.org/10.1080/02604027.1997.9972637

    Article  Google Scholar 

  • Gopher, D., Braune, R.: On the Psychophysics of Workload: Why Bother with Subjective Measures? Human Factors: The Journal of the Human Factors and Ergonomics Society 26(5), 519–532 (1984). https://doi.org/10.1177/001872088402600504

    Article  Google Scholar 

  • Harlen, W.: Effective teaching of science: A review of research. SCRE publication Using research series: vol. 21. Scottish Council for Research in Education, Glasgow (1999)

    Google Scholar 

  • Hmelo, C. E., Nagarajan, A., Day, R. S.: Effects of High and Low Prior Knowledge on Construction of a Joint Problem Space. The Journal of Experimental Education 69(1), 36–56 (2000). https://doi.org/10.1080/00220970009600648

    Article  Google Scholar 

  • Hofstein, A., Lunetta, V. N.: The Role of the Laboratory in Science Teaching: Neglected Aspects of Research. Review of Educational Research 52(2), 201–217 (1982). https://doi.org/10.3102/00346543052002201

    Article  Google Scholar 

  • Hofstein, A., Lunetta, V. N.: The laboratory in science education: Foundations for the twenty-first century. Science Education 88(1), 28–54 (2004). https://doi.org/10.1002/sce.10106

    Article  ADS  Google Scholar 

  • Hulshof, C. D., de Jong, T.: Using just-in-time information to support scientific discovery learning in a computer-based simulation. Interactive Learning Environments 14(1), 79–94 (2006). https://doi.org/10.1080/10494820600769171

    Article  Google Scholar 

  • King, A.: From sage on the stage to guide on the side. College Teaching 41(1), 30 (1993). https://doi.org/10.1080/87567555.1993.9926781

    Article  Google Scholar 

  • Krapp, A.: Interest, motivation and learning: An educational-psychological perspective. European Journal of Psychology of Education 14(1), 23–40 (1999). https://doi.org/10.1007/BF03173109

    Article  Google Scholar 

  • Krapp, A.: Basic needs and the development of interest and intrinsic motivational orientations. Feelings and Emotions in the Learning Process Feelings and Emotions in the Learning Process 15(5), 381–395 (2005). https://doi.org/10.1016/j.learninstruc.2005.07.007

    Article  Google Scholar 

  • Langer, I., Schulz von Thun, F., Tausch, R.: Sich verständlich ausdrücken (9., neu gest. Aufl). Reinhardt, München (2011)

    Google Scholar 

  • Lavoie, D. R., Good, R.: The nature and use of prediction skills in a biological computer simulation. Journal of Research in Science Teaching 25(5), 335–360 (1988). https://doi.org/10.1002/tea.3660250503

    Article  ADS  Google Scholar 

  • Lazonder, A. W., Wilhelm, P., van Lieburg, E.: Unraveling the influence of domain knowledge during simulation-based inquiry learning. Instructional Science 37(5), 437–451 (2009). https://doi.org/10.1007/s11251-008-9055-8

    Article  Google Scholar 

  • Leutner, D.: Guided discovery learning with computer-based simulation games: Effects of adaptive and non-adaptive instructional support. Learning and Instruction 3(2), 113–132 (1993). https://doi.org/10.1016/0959-4752(93)90011-N

    Article  Google Scholar 

  • Marcus, N., Cooper, M., Sweller, J.: Understanding Instructions. Journal of Educational Psychology 88(1), 49–63 (1996)

    Article  Google Scholar 

  • Mazur, E.: Peer instruction: A user’s manual. Prentice Hall series in educational innovation. Pearson/Prentice Hall, Upper Saddle River, NJ. (1997)

    Google Scholar 

  • Morris, C. W.: Foundations of the theory of signs. International Encyclopedia of Unified Science. University of Chicago Press, Chicago (1938).

    Google Scholar 

  • Paas, F. G.: Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology 84(4), 429–434 (1992).

    Article  Google Scholar 

  • Paas, F. G. W. C., van Merriënboer, J. J. G.: The Efficiency of Instructional Conditions: An Approach to Combine Mental Effort and Performance Measures. Human Factors 35(4), 737–743 (1993). https://doi.org/10.1177/001872089303500412

    Article  Google Scholar 

  • Paas, F. G. W. C., Merriënboer, J. J. G., van Adam, J. J.: Measurement of Cognitive Load in Instructional Research. Perceptual and Motor Skills 79(1), 419–430 (1994). https://doi.org/10.2466/pms.1994.79.1.419

    Article  Google Scholar 

  • Schauble, L., Glaser, R., Raghavan, K., Reiner, M.: Causal models and experimentation strategies in scientific reasoning. The Journal of the Learning Sciences 1(2), 201–238 (1991). https://doi.org/10.1207/s15327809jls0102_3

    Article  Google Scholar 

  • Schraw, G.: Promoting general metacognitive awareness. Instructional Science 26(1-2), 113–125 (1998). https://doi.org/10.1023/A:1003044231033

    Article  Google Scholar 

  • Seidel, T., Prenzel, M., Duit, R., Euler, M., Geiser, H., Hoffmann, L., Rimmele, R.: “Jetzt bitte alle nach vorn schauen!” - Lehr-Lernskripts im Physikunterricht und damit verbundenen Bedingungen für individuelle Lernprozesse. Unterrichtswissenschaft, 30(1), 52–77 (2002)

    Google Scholar 

  • Tesch, M., Duit, R.: Experimentieren im Physikunterricht – Ergebnisse einer Videostudie. Zeitschrift für Didaktik der Naturwissenschaften, 10, 51–69 (2004)

    Google Scholar 

  • Thoms, L.-J., Girwidz, R. Training and assessment of experimental competencies from a distance: Optical spectrometry via the Internet. Il Nuovo Cimento C 38(3), 1–10. (2015)

    Google Scholar 

  • van Gog, T., Paas, F.: Instructional Efficiency: Revisiting the Original Construct in Educational Research. Educational Psychologist 43(1), 16–26 (2008). https://doi.org/10.1080/00461520701756248

    Article  Google Scholar 

  • von Weizsäcker, C. F.: Die Einheit der Natur: Studien von Carl Friedrich von Weizsäcker. Hanser, München (1971)

    Google Scholar 

  • von Weizsäcker, E. U. (ed.): SpringerBriefs on pioneers in science and practice: Vol. 28. Ernst Ulrich von Weizsäcker: A pioneer on environmental, climate and energy policies. Springer, Cham (2014)

    Google Scholar 

  • von Weizsäcker, E., von Weizsäcker, C.: Wiederaufnahme der begrifflichen Frage: Was ist Information. Nova Acta Leopoldina, 37(206), 535–555 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars-Jochen Thoms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thoms, LJ., Girwidz, R. (2018). The Role of Information in Inquiry-Based Learning in a Remote Lab on Optical Spectrometry. In: Sokołowska, D., Michelini, M. (eds) The Role of Laboratory Work in Improving Physics Teaching and Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-96184-2_12

Download citation

Publish with us

Policies and ethics