Role of Mineral Surfaces in Prebiotic Processes and Space-Like Conditions

  • John Robert BrucatoEmail author
  • Teresa Fornaro
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)


The study of the interactions between organic molecules and minerals is fundamental to unravel the prebiotic processes that led to the emergence of life on Earth or possibly on other planets. Mineral surfaces may act as adsorbents, templates and catalysts driving the abiotic evolution of chemical systems on early Earth and in space towards increasing molecular complexity. Investigations about molecule-mineral interactions provide also important scientific support to space missions devoted to the search of past or present signs of life in the form of molecular biomarkers that can be included inside rock samples. Such studies are essential for establishing habitability of other planets, selection of sampling sites, identification of potential biomarkers, correct interpretation of data collected during mission operative periods, development of suitable life detection methods and technologies for in situ analysis.

In this chapter, the possible roles of minerals have been examined both from the standpoint of prebiotic chemistry and life detection investigations focusing mainly on Mars exploration.



This research was supported by INAF-Astrophysical Observatory of Arcetri through the Italian Space Agency (ASI) grant agreement ASI/INAF nr. 2015-002-R.0 and by the Carnegie Institution for Science.


  1. Asthagiri A, Hazen RM (2007) An ab initio study of adsorption of alanine on the chiral calcite surface. Mol Simul 33:343–351CrossRefGoogle Scholar
  2. Barone V, Biczysko M, Puzzarini C (2015) Quantum chemistry meets spectroscopy for astrochemistry: increasing complexity toward prebiotic molecules. Acc Chem Res 48:1413–1422CrossRefGoogle Scholar
  3. Beegle L, Bhartia R (2016) SHERLOC: an investigation for Mars 2020. Geophys Res Abstr EGU Gen Assem 18:EGU2016–11215Google Scholar
  4. Benner S, Devine KG, Matveeva LN et al (2000) The missing organic molecules on Mars. Proc Natl Acad Sci USA 97:2425–2430ADSCrossRefGoogle Scholar
  5. Bibring JP, Langevin Y, Mustard J (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express Data. Science 312:400–404ADSCrossRefGoogle Scholar
  6. Biemann K (1979) The implications and limitations of the findings of the Viking organic analysis experiment. J Mol Evol 14:65–70ADSCrossRefGoogle Scholar
  7. Biondi E, Branciamore S, Maurel MC et al (2007) Montmorillonite protection of an UV-irradiated hairpin ribozyme: evolution of the RNA world in a mineral environment. BMC Evol Biol 7:S2CrossRefGoogle Scholar
  8. Blanco C, Ribó JM, Crusats J et al (2013) Mirror symmetry breaking with limited enantioselective autocatalysis and temperature gradients: a stability survey. Phys Chem Chem Phys 15:1546–1556CrossRefGoogle Scholar
  9. Botta O, Bada J (2002) Extraterrestrial organic compounds in meteorites. Surv Geophys 23:411–467ADSCrossRefGoogle Scholar
  10. Braakman R (2013) Mapping metabolism onto the prebiotic organic chemistry of hydrothermal vents. Proc Natl Acad Sci USA 110:13236–13237ADSCrossRefGoogle Scholar
  11. Brownlee D, Tsou P, Aléon J et al (2006) Comet 81P/Wild 2 under a microscope. Science 314:1711–1716ADSCrossRefGoogle Scholar
  12. Brucato JR, Strazzulla G, Baratta GA et al (2006) Cryogenic synthesis of molecules of astrobiological interest: catalytic role of cosmic dust analogues. Orig Life Evol Biosph 36:451–457ADSCrossRefGoogle Scholar
  13. Callahan MP, Smith KE, Cleaves HJ et al (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci USA 108:13995–13998ADSCrossRefGoogle Scholar
  14. Carnimeo I, Biczysko M, Bloino J et al (2011) Reliable structural, thermodynamic, and spectroscopic properties of organic molecules adsorbed on silicon surfaces from computational modeling: the case of glycine@Si(100). Phys Chem Chem Phys 13:16713–16727CrossRefGoogle Scholar
  15. Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132ADSCrossRefGoogle Scholar
  16. Cockell CS, Bush T, Bryce C et al (2016) Habitability: a review. Astrobiology 16:89–117ADSCrossRefGoogle Scholar
  17. Cottin H, Saiagh K, Guan YY et al (2015) The AMINO experiment: a laboratory for astrochemistry and astrobiology on the EXPOSE-R facility of the International Space Station. Int J Astrobiol 14:67–77CrossRefGoogle Scholar
  18. Dobson CM, Ellison GB, Tuck AF et al (2000) Atmospheric aerosols as prebiotic chemical reactors. Proc Natl Acad Sci USA 97:11864–11868ADSCrossRefGoogle Scholar
  19. dos Santos R, Patel M, Cuadros J et al (2016) Influence of mineralogy on the preservation of amino acids under simulated Mars conditions. Icarus 277:342–353ADSCrossRefGoogle Scholar
  20. Downs RT, Hazen RM (2004) Chiral indices of crystalline surfaces as a measure of enantioselective potential. J Mol Catal A Chem 216:273–285CrossRefGoogle Scholar
  21. Dworkin JP, Deamer DW, Sandford SA, Allamandola LJ (2001) Self-assembling amphiphilic molecules: synthesis in simulated interstellar/precometary ices. Proc Natl Acad Sci 98(3):815–819ADSCrossRefGoogle Scholar
  22. Ehrenfreund P, Irvine W, Becker L et al (2002) Astrophysical and astrochemical insights into the origin of life. Rep Prog Phys 65:1427ADSCrossRefGoogle Scholar
  23. Eigenbrode JL, Steele A, Summons RE et al (2016) Preservation of organic matter on Mars by sulfur. AGU Fall Meet, P21D-08Google Scholar
  24. Elsila JE, Glavin DP, Dworkin JP (2009) Cometary glycine detected in samples returned by Stardust. Meteorit Planet Sci 44:1323–1330ADSCrossRefGoogle Scholar
  25. Ertem G, Ertem MC, McKay CP et al (2017) Shielding biomolecules from effects of radiation by Mars analogue minerals and soils. Int J Astrobiol 16:280–285CrossRefGoogle Scholar
  26. Escamilla-Roa E, Moreno F (2012) Adsorption of glycine by cometary dust: astrobiological implications. Planet Space Sci 70:1–9ADSCrossRefGoogle Scholar
  27. Espinoza C, Szczepanski J, Vala M et al (2010) Glycine and its hydrated complexes: a matrix isolation infrared study. J Phys Chem A 114:5919–5927CrossRefGoogle Scholar
  28. Flynn GJ (1996) The delivery of organic matter from asteroids and comets to the early surface of Mars. Earth Moon Planets 72:469–474ADSCrossRefGoogle Scholar
  29. Fornaro T, Carnimeo I (2014) Computer simulations of prebiotic systems. In: Reference module in chemistry, molecular sciences and chemical engineering. ElsevierGoogle Scholar
  30. Fornaro T, Brucato JR, Branciamore S et al (2013a) Adsorption of nucleic acid bases on magnesium oxide (MgO). Int J Astrobiol 12:78–86CrossRefGoogle Scholar
  31. Fornaro T, Brucato JR, Pace E et al (2013b) Infrared spectral investigations of UV irradiated nucleobases adsorbed on mineral surfaces. Icarus 226:1068–1085ADSCrossRefGoogle Scholar
  32. Fornaro T, Brucato JR, Pucci A et al (2013c) Development of extraction protocols for life detection biosensor-based instruments. Planet Space Sci 86:75–79ADSCrossRefGoogle Scholar
  33. Fornaro T, Biczysko M, Monti S et al (2014) Dispersion corrected DFT approaches for anharmonic vibrational frequency calculations: nucleobases and their dimers. Phys Chem Chem Phys 16:10112–10128CrossRefGoogle Scholar
  34. Fornaro T, Burini D, Biczysko M et al (2015a) Hydrogen-bonding effects on infrared spectra from anharmonic computations: uracil-water complexes and uracil dimers. J Phys Chem A 119:4224–4236CrossRefGoogle Scholar
  35. Fornaro T, Carnimeo I, Biczysko M (2015b) Toward feasible and comprehensive computational protocol for simulation of the spectroscopic properties of large molecular systems: the anharmonic infrared spectrum of uracil in the solid state by the reduced dimensionality/hybrid VPT2 approach. J Phys Chem A 119:5313–5326CrossRefGoogle Scholar
  36. Fornaro T, Biczysko M, Bloino J et al (2016) Reliable vibrational wavenumbers for C=O and N-H stretchings of isolated and hydrogen-bonded nucleic acid bases. Phys Chem Chem Phys 18:8479–8490CrossRefGoogle Scholar
  37. Fornaro T, Boosman A, Brucato JR et al (2018) UV irradiation of biomarkers adsorbed on minerals under Martian-like conditions: hints for life detection on Mars. Icarus 313:38–60ADSCrossRefGoogle Scholar
  38. Freissinet C, Glavin DP, Mahaffy PR et al (2015) Organic molecules in the sheepbed mudstone, Gale crater, Mars. J Geophys Res Planets 120:495–514ADSCrossRefGoogle Scholar
  39. Freissinet C, Glavin DP, Buch A et al (2016) First detection of non-chlorinated organic molecules indigenous to a Martian sample. 47th Lunar Planet Sci Conf 47:2568Google Scholar
  40. Fukushi K, Sverjensky DA (2007) A predictive model (ETLM) for arsenate adsorption and surface speciation on oxides consistent with spectroscopic and theoretical molecular evidence. Geochim Cosmochim Acta 71:3717–3745ADSCrossRefGoogle Scholar
  41. Galli D, Palla F (1998) The chemistry of the early universe. Astron Astrophys 335:403–420ADSGoogle Scholar
  42. Gallori E, Branciamore S (2012) Origin and evolution of self-replicating polymers on mineral habitats. In: Seckbach J (ed) Genesis – in the beginning. Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 55–66Google Scholar
  43. Gambino GL, Grassi A, Marletta G (2006) Molecular modeling of interactions between l-Lysine and functionalized quartz surfaces. J Phys Chem B 110:4836–4845CrossRefGoogle Scholar
  44. Garry JRC, Ten Kate IL, Martins Z et al (2006) Analysis and survival of amino acids in Martian regolith analogs. Meteorit Planet Sci 405:391–405ADSCrossRefGoogle Scholar
  45. Glavin DP, Dworkin JP (2009) Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proc Natl Acad Sci USA 106:5487–5492ADSCrossRefGoogle Scholar
  46. Glavin DP, Freissinet C, Miller KE et al (2013) Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J Geophys Res E Planets 118:1955–1973ADSCrossRefGoogle Scholar
  47. Goetz W, Brinckerhoff WB, Arevalo RJ et al (2016) MOMA: the challenge to search for organics and biosignatures on Mars. Int J Astrobiol 15:239–250CrossRefGoogle Scholar
  48. Gomes R, Levison HF, Tsiganis K et al (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:466–469ADSCrossRefGoogle Scholar
  49. Grotzinger JP, Sumner DY, Kah LC et al (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343:1242777CrossRefGoogle Scholar
  50. Hassler DM, Zeitlin C, Wimmer-Schweingruber RF et al (2014) Mars’ surface radiation environment measured with the Mars science laboratory’s curiosity rover. Science 343:1244797CrossRefGoogle Scholar
  51. Hazen RM (2005) Genesis: the scientific quest for life’s origin. Joseph Henry Press, Washington, DCGoogle Scholar
  52. Hazen RM (2006) Mineral surfaces and the prebiotic selection and organization of biomolecules. Am Mineral 91:1715–1729ADSCrossRefGoogle Scholar
  53. Hazen RM, Sverjensky DA (2010) Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb Perspect Biol 2:815–824CrossRefGoogle Scholar
  54. Hazen RM, Filley TR, Goodfriend GA (2001) Selective adsorption of l- and d-amino acids on calcite: implications for biochemical homochirality. Proc Natl Acad Sci USA 98:5487–5490ADSCrossRefGoogle Scholar
  55. Herbst E, Van Dishoeck EF (2009) Complex organic interstellar molecules. Annu Rev Astron Astrophys 47:427–480ADSCrossRefGoogle Scholar
  56. Horneck G, Mileikowsky C, Melosh HJ et al (2002) Viable transfer of microorganisms in the solar system and beyond. In: Horneck G, Baumstark-Khan C (eds) Astrobiology – the quest for the conditions of life. Springer, Berlin, pp 57–76Google Scholar
  57. Jiménez-Serra E, Chiatti F, Corno M et al (2012) Glycine adsorption at nonstoichiometric (010) hydroxyapatite surfaces: a B3LYP study. J Phys Chem C 116:14561–14567CrossRefGoogle Scholar
  58. Jonsson CM, Jonsson CL, Sverjensky DA et al (2009) Attachment of l-glutamate to rutile (α-TiO2): a potentiometric, adsorption, and surface complexation study. Langmuir 25:12127–12135CrossRefGoogle Scholar
  59. Kong H, Sun Q, Wang L et al (2014) Atomic-scale investigation on the facilitation and inhibition of guanine tautomerization at Au(111) Surface. ACS Nano 8:1804–1808CrossRefGoogle Scholar
  60. Lee N, Hummer DR, Sverjensky DA et al (2012) Speciation of l-DOPA on nanorutile as a function of pH and surface coverage using Surface-Enhanced Raman Spectroscopy (SERS). Langmuir 28:17322–17330CrossRefGoogle Scholar
  61. Martin W, Baross J, Kelley D et al (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814CrossRefGoogle Scholar
  62. Martins Z, Watson JS, Sephton MA et al (2006) Free dicarboxylic and aromatic acids in the carbonaceous chondrites Murchison and Orgueil. Meteorit Planet Sci 41:1073–1080ADSCrossRefGoogle Scholar
  63. McAdam AC, Franz HB, Sutter B et al (2014) Sulphur-bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars. J Geophys Res Planets 119:373–393ADSCrossRefGoogle Scholar
  64. Meinert C, Cassam-Chenaï P, Jones NC et al (2015) Anisotropy-guided enantiomeric enhancement in alanineusing Far-UV circularly polarized light. Orig Life Evol B 45:149–161CrossRefGoogle Scholar
  65. Mignon P, Sodupe M (2013) Structural behaviors of cytosine into the hydrated interlayer of Na+-montmorillonite clay. An ab initio molecular dynamics study. J Phys Chem C 117:26179–26189CrossRefGoogle Scholar
  66. Mileikowsky C, Cucinotta FA, Wilson JW et al (2000) Natural transfer of viable microbes in space. Icarus 145:391–427ADSCrossRefGoogle Scholar
  67. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Source Sci New Ser 117:528–529Google Scholar
  68. Miller SL, Urey HC (1959) Origin of life. Science 130:1622–1624ADSCrossRefGoogle Scholar
  69. Milliken RE, Swayze GA, Arvidson RE et al (2008) Opaline silica in young deposits on Mars. Geology 36:847–850ADSCrossRefGoogle Scholar
  70. Monti S, van Duin ACT, Kim SY et al (2012) Exploration of the conformational and reactive dynamics of glycine and diglycine on TiO2: computational investigations in the gas phase and in solution. J Phys Chem C 116:5141–5150CrossRefGoogle Scholar
  71. Navarro-González R, Vargas E, de la Rosa J et al (2010) Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J Geophys Res 115:E12010ADSCrossRefGoogle Scholar
  72. Newman SP, Di Cristina T, Coveney PV et al (2002) Molecular dynamics simulation of cationic and anionic clays containing amino acids. Langmuir 18:2933–2939CrossRefGoogle Scholar
  73. Ody A, Poulet F, Langevin Y et al (2012) Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx. J Geophys Res E Planets 117:1–14CrossRefGoogle Scholar
  74. Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 191:1193–1194ADSCrossRefGoogle Scholar
  75. Panigrahi S, Bhattacharya A, Banerjee S et al (2012) Interaction of nucleobases with wrinkled graphene surface: dispersion corrected DFT and AFM studies. J Phys Chem C 116:4374–4379CrossRefGoogle Scholar
  76. Parikh SJ, Kubicki JD, Jonsson CM et al (2011) Evaluating glutamate and aspartate binding mechanisms to Rutile (α-TiO2) via ATR-FTIR spectroscopy and quantum chemical calculations. Langmuir 27:1778–1787CrossRefGoogle Scholar
  77. Patel MR, Bérces A, Kolb C et al (2003) Seasonal and diurnal variations in Martian surface ultraviolet irradiation: biological and chemical implications for the Martian regolith. Int J Astrobiol 2:21–34CrossRefGoogle Scholar
  78. Pizzarello S, Cronin JR (2000) Non-racemic amino acids in the Murray and Murchison meteorites. Geochim Cosmochim Acta 64:329–338ADSCrossRefGoogle Scholar
  79. Pizzarello S, Huang Y, Alexandre MR (2008) Molecular asymmetry in extraterrestrial chemistry: insights from a pristine meteorite. Proc Natl Acad Sci USA 105:3700–3704ADSCrossRefGoogle Scholar
  80. Poch O, Jaber M, Stalport F et al (2015) Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated Martian surface ultraviolet radiation conditions. Astrobiology 15:221–237ADSCrossRefGoogle Scholar
  81. Pollet R, Boehme C, Marx D (2006) Ab initio simulations of desorption and reactivity of glycine at a water-pyrite interface at “iron-sulphur world” prebiotic conditions. Orig Life Evol Biosph 36:363–379ADSCrossRefGoogle Scholar
  82. Rimola A, Sodupe M, Ugliengo P (2012) Computational simulations of prebiotic processes. In: Seckbach J (ed) Genesis – in the beginning. Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 345–362Google Scholar
  83. Ruff SW, Farmer JD (2016) Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nat Commun 7:13554ADSCrossRefGoogle Scholar
  84. Ruiz-Mirazo K, Peretó J, Moreno A (2004) A universal definition of life: autonomy and open-ended evolution. Orig Life Evol Biosph 34:323–346ADSCrossRefGoogle Scholar
  85. Rull F, Maurice S, Hutchinson I et al (2017) The Raman laser spectrometer for the ExoMars Rover Mission to Mars. Astrobiology 17:627–654ADSCrossRefGoogle Scholar
  86. Saladino R, Carota E, Botta G et al (2015) Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc Natl Acad Sci USA 112:E2746–E2755CrossRefGoogle Scholar
  87. Sandford SA, Aléon J, Alexander CMD et al (2006) Organics captured from comet 81P/Wild 2 by the Stardust spacecraft. Science 314:1720–1724ADSCrossRefGoogle Scholar
  88. Sato I, Urabe H, Ishiguro S et al (2003) Amplification of Chirality from extremely low to greater than 99.5% ee by asymmetric autocatalysis. Angew Chem 115:329–331CrossRefGoogle Scholar
  89. Scappini F, Casadei F, Zamboni R et al (2004) Protective effect of clay minerals on adsorbed nucleic acid against UV radiation: possible role in the origin of life. Int J Astrobiol 3:17–19CrossRefGoogle Scholar
  90. Schoonen M, Smirnov A, Cohn C (2004) A perspective on the role of minerals in prebiotic synthesis. AMBIO A J Hum Environ 33:539–551CrossRefGoogle Scholar
  91. Smith ML, Claire MW, Catling DC et al (2014) The formation of sulphate, nitrate and perchlorate salts in the Martian atmosphere. Icarus 231:51–64ADSCrossRefGoogle Scholar
  92. Sowerby S, Heckl W (1998) The role of self-assembled monolayers of the purine and pyrimidine bases in the emergence of life. Orig Life Evol Biosph 28:283–310ADSCrossRefGoogle Scholar
  93. Sowerby SJ, Edelwirth M, Heckl WM (1998) Self-assembly at the prebiotic solid−liquid interface: structures of self-assembled monolayers of adenine and guanine bases formed on inorganic surfaces. J Phys Chem B 102:5914–5922CrossRefGoogle Scholar
  94. Squyres SW (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306:1709–1714ADSCrossRefGoogle Scholar
  95. Tarasevych AV, Sorochinsky AE, Kukhar VP et al (2015) High temperature sublimation of α-amino acids: a realistic prebiotic process leading to large enantiomeric excess. Chem Commun 51:7054–7057CrossRefGoogle Scholar
  96. ten Kate IL, Garry JRC, Peeters Z et al (2005) Amino acid photostability on the Martian surface. Meteorit Planet Sci 40:1185–1193ADSCrossRefGoogle Scholar
  97. ten Kate IL, Garry JRC, Peeters Z et al (2006) The effects of Martian near surface conditions on the photochemistry of amino acids. Planet Space Sci 54:296–302ADSCrossRefGoogle Scholar
  98. Tolstoy VP, Chernyshova IV, Skryshevsky VA (2003) Handbook of infrared spectroscopy of ultrathin films. Wiley, Hoboken, NJCrossRefGoogle Scholar
  99. Valocchi AJ (1985) Validity of the local equilibrium assumption for modeling sorbing solute transport through homogeneous soils. Water Resour Res 21:808–820ADSCrossRefGoogle Scholar
  100. Viviano-Beck CE, Seelos FP, Murchie SL et al (2014) Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. J Geophys Res Planets 119:1403–1431ADSCrossRefGoogle Scholar
  101. Wächtershäuser G (1990) Evolution of the first metabolic cycles (chemoautotrophy/reductive citric acid cycle/origin of life/pyrite). Evolution 87:200–204Google Scholar
  102. Westall JC (1987) Reactions at the oxide-solution interface: chemical and electrostatic models. In: Davis JA, Hayes KF (eds) Geochemical processes at mineral surfaces. American Chemical Society, Washington, DC, pp 54–78CrossRefGoogle Scholar
  103. Westall F, Loizeau D, Foucher F et al (2013) Habitability on Mars from a microbial point of view. Astrobiology 13:887–897ADSCrossRefGoogle Scholar
  104. Yun Y, Gellman AJ (2015) Adsorption-induced auto-amplification of enantiomeric excess on an achiral surface. Nat Chem 7:520–525CrossRefGoogle Scholar
  105. Zhao YL, Köppen S, Frauenheim T (2011) An SCC-DFTB/MD study of the adsorption of Zwitterionic glycine on a Geminal hydroxylated silica surface in an explicit water environment. J Phys Chem C 115:9615–9621CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.INAF – Astrophysical Observatory of ArcetriFlorenceItaly
  2. 2.Carnegie Science, Geophysical LaboratoryWashington, DCUSA

Personalised recommendations