Advertisement

The Search for Biosignatures in Martian Meteorite Allan Hills 84001

  • Harry Y. McSweenJr.Email author
Chapter
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)

Abstract

Proposed biosignatures in the ancient Allan Hills 84001 martian meteorite are most plausibly explained as abiotic features. The purported evidence of biological activity on Mars included biogenic minerals (magnetite and sulphide formed by magnetotactic and sulphate-respiring microorganisms), organic matter resulting from the decay of such organisms, microfossils, and biofilms, all physically associated with biologically mediated carbonates. The zoned carbonate globules formed by inorganic precipitation from an aqueous fluid or evaporative brine circulating within fractures in this igneous rock. A subsequent shock event partially volatilized Fe-carbonate, and its decomposition produced nanophase magnetite crystals with unusual morphologies, structures, and compositions consistent with vapour condensation. Sulphur isotopes in sulphide are unlike those in terrestrial biogenic sulphides. The organic compounds identified in ALH 84001 include polycyclic aromatic hydrocarbons, complex macromolecules, graphite, and amino acids, most of which are terrestrial, based on their carbon isotopes and stereochemistry. A small amount of the organic matter may be martian, but even that likely had an exogenic (chondritic) source. The putative microfossils were identified only by morphology, without any other supporting observations. These forms are apparently too small to represent viable organisms, which has engendered controversy about the plausibility of nanobacteria. Observations of possible fossilized biofilms are compromised by infiltration of the meteorite by terrestrial microorganisms in the Antarctic environment from which the meteorite was recovered. The controversial hypothesis that ALH 84001 contains evidence of extraterrestrial biology has mostly subsided, but it has fuelled a Mars exploration program focused on the search for life and has helped refine the criteria for the recognition of biosignatures.

Notes

Acknowledgement

John W. Valley and M. Melwani Daswani provided helpful reviews.

References

  1. Anders E (1996) Technical comment. Science 274:2119–2120ADSCrossRefGoogle Scholar
  2. Bada JL, Glavin DP, McDonald GD et al (1998) A search for endogenous amino acids in Martian meteorite ALH 84001. Science 2789:362–365ADSCrossRefGoogle Scholar
  3. Barber DJ, Scott ERD (2002) Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001. Proc Natl Acad Sci USA 99:6551–6561ADSGoogle Scholar
  4. Becker L, Glavin DP, Bada JL (1997) Polycyclic aromatic hydrocarbons (PAHs) in Antarctic Martian meteorites, carbonaceous chondrites, and polar ice. Geochim Cosmochim Acta 61:475–481ADSCrossRefGoogle Scholar
  5. Becker L, Popp B, Rust T et al (1999) The origin of organic matter in the Martian meteorite ALH 84001. Earth Planet Sci Lett 167:71–79ADSCrossRefGoogle Scholar
  6. Bogard DD, Garrison DH (1998) Relative abundances of argon, krypton, and xenon in the Martian atmosphere as measured in Martian meteorites. Geochim Cosmochim Acta 62:1829–1835ADSCrossRefGoogle Scholar
  7. Borg LE, Connelly JN, Nyquist LE et al (1999) The age of the carbonates in Martian meteorite ALH 84001. Science 286:90–94ADSCrossRefGoogle Scholar
  8. Bradley JP, Harvey RP, McSween HY (1996) Magnetite whiskers and platelets in ALH 84001 Martian meteorite: evidence for vapor phase growth. Geochim Cosmochim Acta 60:5149–5155ADSCrossRefGoogle Scholar
  9. Bradley JP, Harvey RP, McSween HY (1997) No ‘nanofossils’ in Martian meteorite. Nature 390:454–455ADSCrossRefGoogle Scholar
  10. Bradley JP, McSween HY, Harvey RP (1998) Epitaxial growth of nanophase magnetite in Martian meteorite ALH 84001: implications for biogenic mineralization. Meteorit Planet Sci 33:765–773ADSCrossRefGoogle Scholar
  11. Buseck PR, Dunin-Borkowski RE, Devouard B et al (2001) Magnetite morphology and life on Mars. Proc Natl Acad Sci USA 98:13490–13495ADSCrossRefGoogle Scholar
  12. Clayton RN, Mayeda TK (1996) Oxygen isotope studies of achondrites. Geochim Cosmochim Acta 60:1999–2017ADSCrossRefGoogle Scholar
  13. Clemett SJ, Dulay MT, Gilette JS et al (1998) Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons (PAHs) in the Martian meteorite ALH 84001. Farady Discuss R Soc Chem 109:417–436ADSCrossRefGoogle Scholar
  14. Corrigan CM, Harvey RP (2004) Multi-generational carbonate assemblages in Martian meteorite Allan Hills 84001: implications for nucleation, growth, and alteration. Meteorit Planet Sci 39:17–30ADSCrossRefGoogle Scholar
  15. Eiler JM, Valley JW, Graham CM et al (2002) Two populations of carbonate in ALH 84001: geochemical evidence for discrimination and genesis. Geochim Cosmochim Acta 66:1285–1303ADSCrossRefGoogle Scholar
  16. Eugster O, Weigel A, Polnau E (1997) Ejection times of Martian meteorites. Geochim Cosmochim Acta 61:2749–2757ADSCrossRefGoogle Scholar
  17. Folk RL (1997) The possible role of nanobacteria (dwarf bacteria) in clay mineral diagenesis and the importance of careful sample preparation in high magnification SEM study. J Sediment Res 67:583–589Google Scholar
  18. Folk RL, Taylor LA (2002) Nannobacterial alteration of pyroxenes in Martian meteorite Allan Hills 84001. Meteorit Planet Sci 37:1057–1069ADSCrossRefGoogle Scholar
  19. Friedmann EI, Wierzchos J, Ascaso C et al (2001) Chains of magnetite crystals in the meteorite ALH 84001: evidence of biologic origin. Proc Natl Acad Sci USA 98:2176–2181ADSCrossRefGoogle Scholar
  20. Gibson EK, McKay DS, Thomas-Keprta KL et al (2001) Life on Mars: evaluation of the evidence within Martian meteorites ALH 84001, Nakhla, and Shergotty. Precambrian Res 106:15–34ADSCrossRefGoogle Scholar
  21. Gleason JD, Kring DA, Hill DH et al (1997) Petrography and bulk chemistry of Martian orthopyroxenite ALH 84001: implications for the origin of secondary carbonates. Geochim Cosmochim Acta 61:3503–3512ADSCrossRefGoogle Scholar
  22. Golden DC, Ming DW, Schwandt CS et al (2001) A simple inorganic process for formation of carbonates, magnetite, and sulfides in Martian meteorite ALH 84001. Am Mineral 86:370–375ADSCrossRefGoogle Scholar
  23. Goswami JN, Sinha N, Murty SVS et al (1997) Nuclear tracks and light noble gases in Allan Hills 84001: preatmospheric size, fall characteristics, cosmic-ray exposure duration and formation age. Meteorit Planet Sci 32:91–96ADSCrossRefGoogle Scholar
  24. Grady MM, Wright IP, Douglas C et al (1994) Carbon and nitrogen in ALH84001. Meteoritics 29:469Google Scholar
  25. Greenwood JP, McSween HY (2001) Petrogenesis of Allan Hills 84001: constraints from impact-melted feldspathic and silica glasses. Meteorit Planet Sci 36:43–61ADSCrossRefGoogle Scholar
  26. Greenwood JP, Riciputi LR, McSween HY (1997) Sulfide isotopic compositions in shergottites and ALH 84001, and possible implications for life on Mars. Geochim Cosmochim Acta 61:4449–4453ADSCrossRefGoogle Scholar
  27. Greenwood JP, Mojzsis SJ, Coath CD (2000) Sulfur isotopic compositions of individual sulfides in Martian meteorite ALH 84001 and Nakhla: implications for crust-regolith exchange on Mars. Earth Planet Sci Lett 184:23–35ADSCrossRefGoogle Scholar
  28. Halevy I, Fischer WW, Eiler JM (2011) Carbonates in the Martian meteorite Allan Hills 84001 formed at 18+4°C in a near-surface aqueous environment. Proc Natl Acad Sci USA 108:16895–16899ADSCrossRefGoogle Scholar
  29. Harvey RP, McSween HY (1996) A possible high-temperature origin for the carbonates in the Martian meteorite ALH84001. Nature 382:49–51ADSCrossRefGoogle Scholar
  30. Jull AJT, Eastoe CJ, Xue S et al (1995) Isotopic composition of carbonates in the SNC meteorites and Allan Hills 84001 and Nakhla. Meteoritics 30:311–318ADSCrossRefGoogle Scholar
  31. Jull AJT, Courtney C, Jeffrey DA et al (1998) Isotopic evidence for a terrestrial source of organic compounds found in Martian meteorites Allan Hills 84001 and Elephant Moraine 79001. Science 279:366–369ADSCrossRefGoogle Scholar
  32. Kajander EO, Çiftçioğlu N (1998) Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc Natl Acad Sci USA 95:8274–8279ADSCrossRefGoogle Scholar
  33. Kirkland BL, Lynch FL, Rahnis MA et al (1999) Alternative origins for nanobacteria-like objects in calcite. Geology 27:347–350ADSCrossRefGoogle Scholar
  34. Kirschvink JL, Maine AT, Vali H (1997) Paleomagnetic evidence of a low-temperature origin of carbonate in the Martian meteorite ALH84001. Science 275:1629–1632ADSCrossRefGoogle Scholar
  35. Knoll A, Osborne MJ (1999) Size limits of very small microorganisms. National Research Council, National Academy Press, Washington, DCGoogle Scholar
  36. Kring DA, Swindle TD, Gleason JD et al (1998) Formation and relative ages of maskelynite and carbonate in ALH 84001. Geochim Cosmochim Acta 62:2155–2166ADSCrossRefGoogle Scholar
  37. Lapen TJ, Righter M, Brandon AD et al (2010) A younger age for ALH 84001 and its geochemical link to shergottite sources in Mars. Science 328:347–351ADSCrossRefGoogle Scholar
  38. Leshin LA, McKeegan KD, Carpenter PK et al (1998) Oxygen isotopic constraints on the genesis of carbonates from Martian meteorite ALH84001. Geochim Cosmochim Acta 62:3–13ADSCrossRefGoogle Scholar
  39. Maniloff J (1997) Nannobacteria: size limits and evidence. Science 276:1776CrossRefGoogle Scholar
  40. McKay DS, Gibson EK, Thomas-Keprta KL et al (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH 84001. Science 273:924–930ADSCrossRefGoogle Scholar
  41. McKay DS, Gibson EK, Thomas-Keprta KL et al (1997) No ‘nanofossils’ in Martian meteorite: reply. Nature 390:455–456CrossRefGoogle Scholar
  42. McSween HY (1997) Evidence for life in a Martian meteorite? GSA Today 7:1–6Google Scholar
  43. McSween HY, Harvey RP (1998) An evaporation model for formation of carbonates in the ALH84001 Martian meteorite. Int Geol Rev 40:774–783CrossRefGoogle Scholar
  44. Melwani Daswani M, Schwenzer SP et al (2016) Alteration minerals, fluids, and gases on early Mars: predictions from 1-D flow geochemical modeling of mineral assemblages in meteorite ALH 84001. Meteorit Planet Sci 51:2154–2174ADSCrossRefGoogle Scholar
  45. Mittlefehldt DW (1994) ALH 84001, a cumulate orthopyroxenite nember of the Martian meteorite clan. Meteoritics 29:214–221ADSCrossRefGoogle Scholar
  46. Nealson KH (1997) The limits of life on Earth and searching for life on Mars. J Geophys Res 102:23675–23686ADSCrossRefGoogle Scholar
  47. Oró J (1998) The case for life on Mars, part 1: An “open” skeptical view. BioAstron News 10:1–6ADSGoogle Scholar
  48. Romanek CS, Grady MM, Wright IP et al (1994) Record of fluid-rock interactions on Mars from the meteorite ALH 84001. Nature 372:655–657ADSCrossRefGoogle Scholar
  49. Score R, MacPherson G (1985) Macroscopic and thin section description of ALH 84001. Antarct Meteorit Newsl JSC Curator Office 8:5Google Scholar
  50. Scott ERD, Yamaguchi A, Krot AN (1997) Petrological evidence for shock melting of carbonates in the Martian meteorite ALH84001. Science 387:377–379Google Scholar
  51. Scott ERD, Krot AN, Yamaguchi A (1998) Carbonates in fractures of Martian meteorite Allan Hills 84001: petrologic evidence for impact origin. Meteorit Planet Sci 33:709–719ADSCrossRefGoogle Scholar
  52. Sephton MA, Wright IP, Gilmour I et al (2002) High molecular weight organic matter in Martian meteorites. Planet Space Sci 50:711–716ADSCrossRefGoogle Scholar
  53. Shearer CK, Layne GD, Papike JJ et al (1996) Sulfur isotopic systematics in altearation assemblages in Martian meteorite Allan Hills 84001. Geochim Cosmochim Acta 60:2921–2926ADSCrossRefGoogle Scholar
  54. Steele A, Goddard D, Beech IB et al (1998) Atomic force microscopy imaging of fragments from the Martian meteorite ALH 84001. J Microsc 189:2–7CrossRefGoogle Scholar
  55. Steele A, Goddard DT, Stapleton D et al (2000) Investigations into an unknown organism on the Martian meteorite Allan Hills 84001. Meteorit Planet Sci 35:237–241ADSCrossRefGoogle Scholar
  56. Steele A, Fries MD, Amundsen HEF et al (2007) Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard. Meteorit Planet Sci 42:1549–1566ADSCrossRefGoogle Scholar
  57. Steele A, McCubbin FM, Fries MD et al (2012) Graphite in the Martian meteorite Allan Hills 84001. Am Mineral 97:1256–1259ADSCrossRefGoogle Scholar
  58. Swindle TD, Grier JA, Burkland MK (1995) Noble gases in orthopyroxenite ALH 84001: a different kind of Martian meteorite with an atmospheric signature. Geochim Cosmochim Acta 59:793–801ADSCrossRefGoogle Scholar
  59. Taylor AP, Barry JC, Webb RI (2001) Structural and morphological anomalies in magnetosomes: possible biogenic origin for magnetite in ALH 84001. J Microsc 201:84–106MathSciNetCrossRefGoogle Scholar
  60. Thomas-Keprta KL, McKay DS, Wentworth SJ et al (1998) Bacterial mineralization patterns in basaltic aquifers: implications for possible life in Martian meteorite ALH 84001. Geology 26:1031–1035ADSCrossRefGoogle Scholar
  61. Thomas-Keprta KL, Bazylinski DA, Kirschvink JL et al (2000) Elongated prismatic magnetite crystals in ALH 84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmochim Acta 64:4049–4081ADSCrossRefGoogle Scholar
  62. Thomas-Keprta KL, Clemett SJ, Bazylinski DA et al (2001) Truncated hexa-octahedral magnetite crystals in ALH 84001: presumptive biosignatures. Proc Natl Acad Sci USA 98:2164–2169ADSCrossRefGoogle Scholar
  63. Treiman AH (1995) A petrographic history of Martian meteorite ALH 84001: two shocks and an ancient age. Meteoritics 30:294–302ADSCrossRefGoogle Scholar
  64. Treiman AH (1998) The history of Allan Hills 84001 revised: multiple shock events. Meteorit Planet Sci 33:753–764ADSCrossRefGoogle Scholar
  65. Treiman AH (2003) Submicron magnetite grains and carbon compounds in Martian meteorite ALH 84001: inorganic, abiotic formation by shock and thermal metamorphism. Astrobiology 3:369–392ADSCrossRefGoogle Scholar
  66. Treiman AH, Essene EJ (2011) Chemical composition of magnetite in Martian meteorite ALH 84001: revised appraisal from thermochemistry of phases in Fe-Mg-C-O. Geochim Cosmochim Acta 75:5324–5335ADSCrossRefGoogle Scholar
  67. Treiman AH, Romanek CS (1998) Bulk and stable isotopic compositions of carbonate minerals in Martian meteorite Allan Hills 84001: no proof of high formation temperature. Meteorit Planet Sci 33:737–742ADSCrossRefGoogle Scholar
  68. Treiman AH, Amundsen HEF, Blake DF et al (2002) Hydrothermal origin for carbonate globules in Martian meteorite ALH84001: a terrestrial analogue from Spitsbergen (Norway). Earth Planet Sci Lett 204:323–332ADSCrossRefGoogle Scholar
  69. Uwins P, Webb RI, Taylor AP (1998) Novel nano-organisms from Australian sandstones. Am Mineral 83:1541–1550ADSCrossRefGoogle Scholar
  70. Valley JW, Eiler JM, Graham CM et al (1997) Low-temperature carbonate concretions in the Martian meteorite ALH84001: evidence from stable isotopes and mineralogy. Science 275:1633–1638ADSCrossRefGoogle Scholar
  71. Wadhwa M, Crozaz G (1998) The igneous crystallization history of an ancient Martian meteorite from rare earth element microdistributions. Meteorit Planet Sci 33:685–692ADSCrossRefGoogle Scholar
  72. Warren PH (1998) Petrologic evidence for low-temperature, possibly flood evaporatic origin of carbonates in the ALH84001 meteorite. J Geophys Res 103:16759–16773ADSCrossRefGoogle Scholar
  73. Warren PH, Kallemeyn GW (1996) Siderophile trace elements in ALH84001, other SNC meteorites and eucrites: evidence of heterogeneity, possibly time-linked, in the mantle of Mars. Meteorit Planet Sci 31:97–105ADSCrossRefGoogle Scholar
  74. Weiss BP, Kirschvink JL, Baudenbacher FJ et al (2000) A low temperature transfer of ALH 84001 from Mars to Earth. Science 290:791–794ADSCrossRefGoogle Scholar
  75. Westall F (1999) The nature of fossil bacteria: a guide to the search for extraterrestrial life. J Geophys Res 104:E7CrossRefGoogle Scholar
  76. Zolotov MY, Shock EL (2000) An abiotic origin for hydrocarbons in the Allan Hills 84001 Martian meteorite through cooling of magmatic and impact-generated gases. Meteorit Planet Sci 35:629–638ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of TennesseeKnoxvilleUSA

Personalised recommendations