Biosignatures in Deep Time

  • Frances WestallEmail author
  • Keyron Hickman-Lewis
  • Barbara Cavalazzi
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)


Life on the early Earth inhabited a planet whose environment was vastly different from the Earth of today. An anaerobic and hot early Earth was the birthplace of the first living cells but wide-spread small-scale physico-chemical diversity provided opportunities for a variety of specialists: alkalophiles, acidophiles, halophiles etc. The earliest record of life has been lost due to plate tectonic recycling and the oldest preserved terranes (~3.9–3.7 Ga) are heavily altered by metamorphism, although they may contain traces of fossil life. As of ~3.5 Ga, ancient sediments are so well-preserved that a broad diversity of micro-environments and fossil traces of life can be studied, providing a surprising window into communities of microbes that had already reached the evolutionary stage of photosynthesis. From the wide variety of traces of ancient life that have been reported from the Archaean geological record in Greenland, Canada, South Africa and Western Australia, we examine a few particularly pertinent examples. Biosignatures in the rock record include microfossils, microbial mats, stromatolites, microbially induced sedimentary structures, biominerals, biologically indicative isotopic ratios and fractionations, elemental distributions, organochemical patterns and other geochemical peculiarities best explained by biological mediation. Due to dynamic geological reprocessing over the billions of years since these fossils entered the rock record, identifications of very ancient traces of life have been subject to criticism, hence the often complex arguments regarding their biogenicity. We here highlight a range of unambiguously bona fide and widely supported examples of fossil biosignatures. Fossil biosignatures have great promise as analogues of life that might be detected on other planets. In this respect, the study of the early Earth is particularly pertinent to the search for life on Mars, given the planetary- and microbial-scale similarities that prevailed on both planets during their early histories, together with the lack of subsequent geological reprocessing on Mars, which may make it an ideal repository for a near-pristine fossil record.



FW and KHL acknowledge support from The French Space Agency (CNES) and the Mars Analogues for Space Exploration (MASE) project supported by the FP7/2007-2013 (grant no. 607297). BC acknowledges support from the FP7-PEOPLE-2013-CIG/INACMa (grant no. 618657).


  1. Allwood AC, Walter MR, Kamber BS et al (2006) Stromatolite reef from the early Archaean era of Australia. Nature 441:714–719ADSCrossRefGoogle Scholar
  2. Allwood AC, Grotzinger JP, Knoll AH et al (2009) Controls on development and diversity of Early Archean stromatolites. Proc Natl Acad Sci USA 106:9548–9555ADSCrossRefGoogle Scholar
  3. Bontognali TRR, Sessions AL, Allwood AC et al (2012) Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc Natl Acad Sci USA 109:15146–15151ADSCrossRefGoogle Scholar
  4. Brasier MD, Green OR, Jephcoat AP et al (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81ADSCrossRefGoogle Scholar
  5. Brasier MD, Antcliffe J, Saunders M et al (2015) Changing the picture of Earth’s earliest fossils (3.5–1.9 Ga) with new approaches and new discoveries. Proc Natl Acad Sci USA 112:4859–4864ADSCrossRefGoogle Scholar
  6. Buick R, Dunlop J, Groves D (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archean chert-barite unit from North Pole, Western Australia. Alcheringa 5:161–181CrossRefGoogle Scholar
  7. Byerly GR, Lowe DR, Walsh MM (1986) Stromatolites from the 3300–3500 Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 319:489–491ADSCrossRefGoogle Scholar
  8. Cockell CS (2014) The subsurface habitability of terrestrial rocky planets: Mars. In: Kellmeyer J, Wagner D (eds) Microbial life of the deep biosphere. De Gruyter, Boston, pp 225–259Google Scholar
  9. Cockell CS, Balme M, Bridges JC et al (2012) Uninhabited habitats on Mars. Icarus 217:184–193ADSCrossRefGoogle Scholar
  10. Dass AV, Hickman-Lewis K, Brack A et al (2016) Stochastic prebiotic chemistry within realistic geological systems. ChemistrySelect 1:4906–4926CrossRefGoogle Scholar
  11. de Duve C (1995) Vital dust. BasicBooks, New YorkGoogle Scholar
  12. de Vries ST, Touret JLR (2007) Early Archaean hydrothermal fluids; a study of inclusions from the 3.4 Ga Buck Ridge Chert, Barberton Greenstone Belt, South Africa. Chem Geol 237:289–302ADSCrossRefGoogle Scholar
  13. de Vries ST, Nijman W, de Boer PL (2010) Sedimentary geology of the Palaeoarchaean Buck Ridge (South Africa) and Kittys Gap (Western Australia) volcano-sedimentary complexes. Precambrian Res 183:749–769ADSCrossRefGoogle Scholar
  14. Delarue F, Robert F, Sugitani K et al (2017) Investigation of the geochemical preservation of ca. 3.0 Ga permineralized and encapsulated microfossils by nanoscale secondary ion mass spectrometry. Astrobiology 17:1192–1202ADSCrossRefGoogle Scholar
  15. Derenne C, Robert F, Skrzypczak-Bonduelle A et al (2008) Molecular evidence for life in the 3.5 billion year old Warrawoona chert. Earth Planet Sci Lett 272:476–448ADSCrossRefGoogle Scholar
  16. Foucher F, Westall F, Brandstatter F et al (2010) Testing the survival of microfossils in artificial Martian sedimentary meteorites during entry into Earth’s atmosphere: the STONE 6 experiment. Icarus 207:616–630ADSCrossRefGoogle Scholar
  17. Golden DC, Ming DW, Schwandt CS et al (2000) An experimental study on kinetically-driven precipitation of Ca-Mg-Fe carbonates from solution: implications for the low temperature formation of carbonates in Martian meteorite ALH84001. Meteorit Planet Sci 35:457–465ADSCrossRefGoogle Scholar
  18. Hassenkam T, Andersson MP, Dalby KN et al (2017) Elements of Eoarchean life trapped in mineral inclusions. Nature 548:78–81ADSCrossRefGoogle Scholar
  19. Heubeck C (2009) An early ecosystem of Archean tidal microbial mats (Moodies Group, South Africa, ca. 3.2 Ga). Geology 37:931–934ADSCrossRefGoogle Scholar
  20. Hickman-Lewis K, Garwood RJ, Brasier MD et al (2016) Carbonaceous microstructures from sedimentary laminated chert within the 3.46 Ga Apex Basalt, Chinaman Creek locality, Pilbara, Western Australia. Precambrian Res 278:161–178ADSCrossRefGoogle Scholar
  21. Hickman-Lewis K, Garwood RJ, Withers PJ et al (2017) X-ray microtomography as a tool for investigating the petrological context of Precambrian cellular Remains. In: Brasier AT, McIlroy D, McLoughlin N (eds) Earth system evolution and early life: a celebration of the work of Martin Brasier, vol 448. Geological Society, London, Special Publications, pp 33–56ADSCrossRefGoogle Scholar
  22. Hickman-Lewis K, Cavalazzi B, Foucher F et al (2018) Most ancient evidence for life in the Barberton Greenstone Belt: microbial mats and biofabrics of the ~3.47 Ga Middle Marker Horizon. Precambrian Res 312:45–67ADSCrossRefGoogle Scholar
  23. Hofmann HJ, Grey K, Hickman A et al (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol Soc Am Bull 111:1256–1262CrossRefGoogle Scholar
  24. Homann M, Heubeck C, Airo A et al (2015) Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton Greenstone Belt, South Africa). Precambrian Res 266:47–64ADSCrossRefGoogle Scholar
  25. Homann M, Heubeck C, Bontognali TRR et al (2016) Evidence for cavity-dwelling microbial life in 3.22 Ga tidal deposits. Geology 44:51–54ADSCrossRefGoogle Scholar
  26. Ingersoll AP (1969) The runaway greenhouse: a history of water on Venus. J Atmos Sci 26:1191–1198ADSCrossRefGoogle Scholar
  27. Jakosky BM, Grebowsky JM, Luhmann JG et al (2015) Initial results from the MAVEN mission to Mars. Geophys Res Lett 42:8791–8802ADSCrossRefGoogle Scholar
  28. Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938ADSCrossRefGoogle Scholar
  29. Kamber BS (2015) The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res 258:48–82ADSCrossRefGoogle Scholar
  30. Le Guillou C, Rouzaud JN, Bonal L et al (2012) High resolution TEM of chondritic carbonaceous matter: metamorphic evolution and heterogeneity. Meteorit Planet Sci 47:345–362ADSCrossRefGoogle Scholar
  31. Lewandowski Z, Walser G (1991) Influence of hydrodynamics on biofilm accumulation. In: Krenkel PA (ed) Environmental Engineering Proceedings. American Society of Civil Engineers, New York, pp 619–624Google Scholar
  32. Lindsay JF, Brasier MD, McLoughlin N et al (2005) The problem of deep carbon – an Archean paradox. Precambrian Res 143:1–22ADSCrossRefGoogle Scholar
  33. Lowe DR, Fisher Worrell G (1999) Sedimentology, mineralogy and implications of silicified evaporites in the Kromberg Formation, Barberton Greenstone Belt, South Africa. In: Lowe DR, Byerly GR (eds) Geolgic evolution of the Barberton Greenstone Belt, South Africa, vol 329. Geological Society of America, Special Paper, pp 167–180Google Scholar
  34. Marshall C, Love GD, Snape CE et al (2007) Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia. Precambrian Res 155:1–23ADSCrossRefGoogle Scholar
  35. McKay DS, Gibson EK Jr, Thomas-Keprta KL et al (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930ADSCrossRefGoogle Scholar
  36. Moorbath S (2009) The discovery of the Earth’s oldest rocks. Notes Rec R Soc 63:381–392CrossRefGoogle Scholar
  37. Mozjsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409:178–181ADSCrossRefGoogle Scholar
  38. Noffke N, Gerdes G, Klenke T, Krumbein WE (2001) Microbially induced sedimentary structures—a new category within the classification of primary sedimentary structures. J Sediment Res 71:649–656CrossRefGoogle Scholar
  39. Noffke N (2009) The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth Sci Rev 96:173–180ADSCrossRefGoogle Scholar
  40. Noffke N, Hazen RM, Nhleko N (2003) Earth’s earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan group, South Africa). Geology 31:673–676ADSCrossRefGoogle Scholar
  41. Noffke N, Eriksson KA, Hazen RM et al (2006) A new window into Archean life: microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34:253–256ADSCrossRefGoogle Scholar
  42. Noffke N, Christian D, Wacey D et al (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13:1103–1124ADSCrossRefGoogle Scholar
  43. Oehler DZ, Robert F, Walter MR et al (2010) Diversity in the Archean Biosphere: new insights from NanoSIMS. Astrobiology 10:413–424ADSCrossRefGoogle Scholar
  44. Oehler DZ, Walsh MM, Sugitani K et al (2017) Large and robust lenticular microorganisms on the young Earth. Precambrian Res 296:112–119ADSCrossRefGoogle Scholar
  45. Ohtomo Y, Kakegawa T, Ishida A et al (2013) Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nat Geosci 7:25–28ADSCrossRefGoogle Scholar
  46. Orange F, Westall F, Disnar JR et al (2009) Experimental silicification of the extremophilic Archaea Pyroccus abyssi and Methanocaldococcus jannaschii. Applications in the search for evidence of life in early Earth and extraterrestrial rocks. Geobiology 7:403–418CrossRefGoogle Scholar
  47. Pearson VK, Sephton MA, Franchi IA et al (2006) Carbon and nitrogen in carbonaceous chondrites: elemental abundances and stable isotopic compositions. Meteorit Planet Sci 41:1899–1918ADSCrossRefGoogle Scholar
  48. Pope MC, Grotzinger JP, Schreiber BC (2000) Evaporitic subtidal stromatolites produced by in situ precipitation: textures, facies associations, and temporal significance. J Sediment Res 70:1139–1151CrossRefGoogle Scholar
  49. Rosing MT (1999) 13C-depleted carbon microparticles in >3700-Ma seafloor sedimentary rocks from West Greenland. Science 283:674–676ADSCrossRefGoogle Scholar
  50. Schidlowki M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res 106:117–134ADSCrossRefGoogle Scholar
  51. Schopf JW (1993) Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science 260:640–646ADSCrossRefGoogle Scholar
  52. Schopf JW, Kitajima K, Spicuzza MJ et al (2018) SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proc Natl Acad Sci USA 115:53–58ADSCrossRefGoogle Scholar
  53. Steele A, McGubbin FM, Agee C et al (2012) A reduced organic carbon component to Martian Basalts. Science 337:212–215ADSCrossRefGoogle Scholar
  54. Stoodley P, Jacobsen A, Dunsmore BC, Purevdorj B, Wilson S, Lapin-Scott HM, Costerton JW (2001) The influence of fluid shear and alcl3 on the material properties of pseudomonas aeruginosa pao1 and desulfovibrio sp. ex265 biofilms. Water Sci and Technol 43:113–120CrossRefGoogle Scholar
  55. Sugitani K, Grey K, Nagaoka T et al (2009) Taxonomy and biogenicity of Archaean spheroidal microfossils (ca. 3.0 Ga) from the Mount Goldsworthy-Mount Grant area in the northeastern Pilbara Craton, Western Australia. Precambrian Res 173:50–59ADSCrossRefGoogle Scholar
  56. Sugitani K, Mimura K, Takeuchi M et al (2015) A Paleoarchean coastal hydrothermal field inhabited by diverse microbial communities: the Strelley Pool Formation, Pilbara Craton, Western Australia. Geobiology 13:522–545CrossRefGoogle Scholar
  57. Tan CH, Lee KWK, Burmølle M et al (2017) All together now: experimental multispecies biofilm model systems. Environ Microbiol 19:42–53CrossRefGoogle Scholar
  58. Tashiro T, Ishida A, Hori M et al (2017) Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549:516–518ADSCrossRefGoogle Scholar
  59. Tice MM (2009) Environmental controls on photosynthetic microbial mat distribution and morphogenesis on a 3.42 Ga clastic-starved platform. Astrobiology 9:989–1000ADSCrossRefGoogle Scholar
  60. Tice M, Lowe DR (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431:549–552ADSCrossRefGoogle Scholar
  61. Tice M, Lowe DR (2006) The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: a review and new evidence from the 3.42 Ga Buck Reef Chert. Earth Sci Rev 76:259–300ADSCrossRefGoogle Scholar
  62. Ueno Y, Isozaki Y, Yurimoto H, Maruyama S (2001) Carbon isotopic signatures of individual Archean microfossils (?) From Western Australia. Int Geol Rev 43:196–212CrossRefGoogle Scholar
  63. Vago JL, Westall F, Pasteur Instrument Teams et al (2017) Habitability on Early Mars and the search for biosignatures with the ExoMars Rover. Astrobiology 17:471–510ADSCrossRefGoogle Scholar
  64. van den Boorn SHJM, van Bergen MJ, Nijman W et al (2007) Dual role of seawater and hydrothermal fluids in Early Archean chert formation: evidence from silicon isotopes. Geology 10:939–942CrossRefGoogle Scholar
  65. Wacey D, McLoughlin N, Green OR, Parnell J, Stoakes CA, Brasier MD (2006) The *3.4 billion-year-old strelley pool sandstone: a new window into early life on earth. Int J Astrobiol 5:333–342CrossRefGoogle Scholar
  66. Wacey D (2010) Stromatolites in the ~3400 Ma Strelley Pool Formation, Western Australia: examining biogenicity from the macro- to the nano-scale. Astrobiology 10:381–395ADSCrossRefGoogle Scholar
  67. Wacey D, Kilburn MR, Saunders M et al (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat Geosci 4:698–670ADSCrossRefGoogle Scholar
  68. Wacey D, Saunders M, Kong C et al (2015) 3.46 Ga Apex chert ‘microfossils’ reinterpreted as mineral artefacts produced during phyllosilicate exfoliation. Gondwana Res 36:296–313ADSCrossRefGoogle Scholar
  69. Walsh MM (1992) Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res 54:271–293ADSCrossRefGoogle Scholar
  70. Walsh MM, Lowe DR (1999) Modes of accumulation of carbonaceous matter in the early Archean: a petrographic and geochemical study of the carbonaceous cherts of the Swaziland Supergroup. In: Lowe DR, Byerly GR (eds) Geological evolution of the Barberton Greenstone Belt, South Africa, vol 329. Geological Society of America, Special Publications, pp 115–132Google Scholar
  71. Way MJ, Del Genio AD, Kiang NY et al (2016) Was Venus the first habitable world of our solar system? Geophys Res Lett 3:8376–8383ADSCrossRefGoogle Scholar
  72. Westall F, de Vries ST, Nijman W et al (2006a) The 3.466 Ga Kitty’s Gap Chert, an Early Archaean microbial ecosystem. In Reimold WU, Gibson R (eds) Processes on the Early Earth, vol 405. Geological Society of American, Special Publications, pp 105–131Google Scholar
  73. Westall F, de Ronde CEJ, Southam G et al (2006b) Implications of a 3.472–3.333 Ga-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philos Trans R Soc Lond B 361:1857–1875CrossRefGoogle Scholar
  74. Westall F, Foucher F, Cavalazzi B et al (2011a) Early life on Earth and Mars: a case study from ~3.5 Ga-old rocks from the Pilbara, Australia. Planet Space Sci 59:1093–1106ADSCrossRefGoogle Scholar
  75. Westall F, Cavalazzi B, Lemelle L et al (2011b) Implications of in situ calcification for photosynthesis in a ~3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa. Earth Planet Sci Lett 310:468–479ADSCrossRefGoogle Scholar
  76. Westall F, Foucher F, Bost N et al (2015a) Biosignatures on Mars: what, where and how? Implications for the search for Martian life. Astrobiology 15:998–1029ADSCrossRefGoogle Scholar
  77. Westall F, Campbell KA, Bréhéret JG et al (2015b) Archean (3.33 Ga) microbe-sediment systems were diverse and flourished in a hydrothermal context. Geology 43:615–618ADSCrossRefGoogle Scholar
  78. Westall F, Hickman-Lewis K, Hinman N et al (2018) A hydrothermal sedimentary context for the origin of life. Astrobiology 18:259–293ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Frances Westall
    • 1
    Email author
  • Keyron Hickman-Lewis
    • 1
    • 2
  • Barbara Cavalazzi
    • 2
    • 3
  1. 1.Centre de Biophysique Moléculaire, CNRSOrléansFrance
  2. 2.Dipartimento di Scienze Biologiche Geologiche e AmbientaliUniversità di BolognaBolognaItaly
  3. 3.Department of GeologyUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations