Skip to main content

Mineralogical Identification of Traces of Life

  • Chapter
  • First Online:

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

Abstract

Many organisms impact mineral nucleation and growth. This results in the formation of biominerals with chemical, structural and textural properties providing clues to their biogenicity. However, ageing modifies these properties to some extent. Moreover, some abiotic processes form minerals with similar properties. Therefore, decoding traces of life in minerals requires caution, and one prerequisite is a reliable estimation of the geochemical conditions under which a biomineral formed. Here we discuss several examples of biominerals which illustrate these different ideas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alleon J, Bernard S, Le Guillou C et al (2016) Early entombment within silica minimizes the molecular degradation of microorganisms during advanced diagenesis. Chem Geol 437:98–108

    Article  ADS  Google Scholar 

  • Aloisi G (2008) The calcium carbonate saturation state in cyanobacterial mats throughout Earth’s history. Geochim Cosmochim Acta 72:6037–6060

    Article  ADS  Google Scholar 

  • Amor M, Busigny V, Durand-Dubief M et al (2015) Chemical signature of magnetotactic bacteria. Proc Natl Acad Sci USA 112:1699–1703

    Article  ADS  Google Scholar 

  • Amor M, Busigny V, Louvat P et al (2016) Mass-dependent and -independent signature of Fe isotopes in magnetotactic bacteria. Science 352:705–708

    Article  ADS  Google Scholar 

  • Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292:1701–1704

    Article  ADS  Google Scholar 

  • Banfield JF (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754

    Article  ADS  Google Scholar 

  • Banfield JF, Moreau JW, Chan CS et al (2001) Mineralogical biosignatures and the search for life on Mars. Astrobiology 1:447–465

    Article  ADS  Google Scholar 

  • Barabesi C, Galizzi A, Mastromei G et al (2007) Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J Bacteriol 189:228–235

    Article  Google Scholar 

  • Barber DJ, Scott ERD (2002) Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001. Proc Natl Acad Sci USA 99:6556–6561

    Article  ADS  Google Scholar 

  • Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230

    Article  Google Scholar 

  • Bell MS (2007) Experimental shock decomposition of siderite and the origin of magnetite in Martian meteorite ALH 84001. Meteorit Planet Sci 42:935–949

    Article  ADS  Google Scholar 

  • Benzerara K, Menguy N (2009) Looking for traces of life in minerals. CR Palevol 8:617–628

    Article  Google Scholar 

  • Benzerara K, Miot J (2011) Biomineralization mechanisms. In: Gargaud M, López-Garcia P, Martin H (eds) Origins and evolution of life – an astrobiological perspective. Cambridge University Press, Cambridge, pp 450–468

    Google Scholar 

  • Benzerara K, Menguy N, Guyot F et al (2004) Biologically controlled precipitation of calcium phosphate by Ramlibacter tataouinensis. Earth Planet Sci Lett 228:439–449

    Article  ADS  Google Scholar 

  • Benzerara K, Menguy N, López-García P et al (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc Natl Acad Sci USA 103:9440–9445

    Article  ADS  Google Scholar 

  • Benzerara K, Meibom A, Gautier Q et al (2010) Nanotextures of aragonite in stromatolites from the quasi-marine Satonda crater lake, Indonesia. In: Pedley HM, Rogerson M (eds) Tufas and speleothems: unravelling the microbial and physical controls, vol 336. Geological Society, London, Special Publications, pp 211–224

    Article  ADS  Google Scholar 

  • Benzerara K, Menguy N, Obst M et al (2011) Study of the crystallographic architecture of corals at the nanoscale by scanning transmission x-ray microscopy and transmission electron microscopy. Ultramicroscopy 111:1268–1275

    Article  Google Scholar 

  • Benzerara K, Skouri-Panet F, Li J et al (2014) Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc Natl Acad Sci USA 111:10933–10938

    Article  ADS  Google Scholar 

  • Bernard S, Benzerara K, Beyssac O et al (2015) Evolution of the macromolecular structure of sporopollenin during thermal degradation. Heliyon 1:e00034

    Article  Google Scholar 

  • Braissant O, Decho AW, Dupraz C et al (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411

    Article  Google Scholar 

  • Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. PALAIOS 2:241–254

    Article  ADS  Google Scholar 

  • Burton EA, Walter LM (1987) Relative precipitation rates of aragonite and Mg calcite from seawater-temperature or carbonate ion control. Geology 15:111–114

    Article  ADS  Google Scholar 

  • Butler IB, Rickard D (2000) Framboidal pyrite formation via the oxidation of iron(II) monosulfide by hydrogen sulfide. Geochim Cosmochim Acta 64:2665–2672

    Article  ADS  Google Scholar 

  • Cam N, Benzerara K, Georgelin T et al (2016) Selective uptake of alkaline earth metals by cyanobacteria forming intracellular carbonates. Environ Sci Technol 50:11654–11662

    Article  ADS  Google Scholar 

  • Cam N, Benzerara K, Georgelin T et al (2018) Cyanobacterial formation of intracellular Ca-carbonates in undersaturated solutions. Geobiology 16:49–61

    Article  Google Scholar 

  • Chan CS (2004) Microbial polysaccharides template assembly of nanocrystal fibers. Science 303:1656–1658

    Article  ADS  Google Scholar 

  • Chan CS, Fakra SC, Edwards DC et al (2009) Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim Cosmochim Acta 73:3807–3818

    Article  ADS  Google Scholar 

  • Chan CS, Fakra SC, Emerson D et al (2011) Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J 5:717–727

    Article  Google Scholar 

  • Coker VS, Byrne JM, Telling ND et al (2012) Characterisation of the dissimilatory reduction of Fe(III)-oxyhydroxide at the microbe – mineral interface: the application of STXM-XMCD: STXM-XMCD of microbial Fe(III)-reduction. Geobiology 10:47–354

    Article  Google Scholar 

  • Cölfen H, Antonietti M (2008) Mesocrystals and nonclassical crystallization. Wiley, Chichester

    Book  Google Scholar 

  • Cosmidis J, Templeton AS (2016) Self-assembly of biomorphic carbon/sulfur microstructures in sulfidic environments. Nat Commun 7:12812

    Article  ADS  Google Scholar 

  • Cosmidis J, Benzerara K, Gheerbrant E et al (2013) Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco). Geobiology 11:139–153

    Article  Google Scholar 

  • Cosmidis J, Benzerara K, Morin G et al (2014) Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France). Geochim Cosmochim Acta 126:78–96

    Article  ADS  Google Scholar 

  • Couradeau E, Benzerara K, Gerard E et al (2012) An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336:459–462

    Article  ADS  Google Scholar 

  • Couradeau E, Benzerara K, Gérard E et al (2013) Cyanobacterial calcification in modern microbialites at the submicrometer scale. Biogeosciences 10:5255–5266

    Article  ADS  Google Scholar 

  • De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. Rev Mineral Geochem 54:57–93

    Article  Google Scholar 

  • De Yoreo JJ, Gilbert PU, Sommerdijk NA et al (2015) Crystal growth. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 31:aaa6760

    Article  Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438

    Article  Google Scholar 

  • Dupraz C, Reid RP, Braissant O et al (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162

    Article  ADS  Google Scholar 

  • Edgar KM, Anagnostou E, Pearson PN et al (2015) Assessing the impact of diagenesis on δ11B, δ13C, δ18O, Sr/Ca and B/Ca values in fossil planktic foraminiferal calcite. Geochim Cosmochim Acta 166:189–209

    Article  ADS  Google Scholar 

  • Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561–583

    Article  Google Scholar 

  • Faivre D, Schüler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108:4875–4898

    Article  Google Scholar 

  • Folk RL (2005) Nannobacteria and the formation of framboidal pyrite: textural evidence. J Earth Syst Sci 114:369–374

    Article  ADS  Google Scholar 

  • Garcia-Ruiz JM, Hyde ST, Carnerup AM et al (2003) Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302:1194–1197

    Article  ADS  Google Scholar 

  • Garcia-Ruiz JM, Melero-Garcia E, Hyde ST (2009) Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 323:362–365

    Article  ADS  Google Scholar 

  • Giuffre AJ, Hamm LM, Han N et al (2013) Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc Natl Acad Sci USA 110:9261–9266

    Article  ADS  Google Scholar 

  • Golden DC, Ming DW, Morris RV et al (2004) Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. Am Mineral 89:681–695

    Article  ADS  Google Scholar 

  • Grunenwald A, Keyser C, Sautereau AM et al (2014) Adsorption of DNA on biomimetic apatites: toward the understanding of the role of bone and tooth mineral on the preservation of ancient DNA. Appl Surf Sci 292:867–875

    Article  ADS  Google Scholar 

  • Guida BS, Garcia-Pichel F (2016) Extreme cellular adaptations and cell differentiation required by a cyanobacterium for carbonate excavation. Proc Natl Acad Sci USA 113:5712–5717

    Article  ADS  Google Scholar 

  • Hazen RM, Ausubel JH (2016) On the nature and significance of rarity in mineralogy. Am Mineral 101:1245–1251

    Article  ADS  Google Scholar 

  • Hazen RM, Papineau D, Leeker WB et al (2008) Mineral evolution. Am Mineral 93:11–12

    Article  Google Scholar 

  • Herwartz D, Tütken T, Jochum KP et al (2013) Rare earth element systematics of fossil bone revealed by LA-ICPMS analysis. Geochim Cosmochim Acta 103:161–183

    Article  ADS  Google Scholar 

  • Kalliokoski J, Cathles L (1969) Morphology, mode of formation and diagenetic changes in framboids. Bull Geol Soc Finl 41:125–133

    Article  Google Scholar 

  • Keenan SW (2016) From bone to fossil: a review of the diagenesis of bioapatite. Am Mineral 101:1943–1951

    Article  ADS  Google Scholar 

  • Kohn MJ, Riciputi LR, Stakes D et al (1998) Sulfur isotope variability in biogenic pyrite: reflections of heterogeneous bacterial colonization? Am Mineral 83:1454–1468

    Article  ADS  Google Scholar 

  • Kopp RE, Kirschvink JL (2008) The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth Sci Rev 86:42–61

    Article  ADS  Google Scholar 

  • Krepski ST, Emerson D, Hredzak-Showalter PL et al (2013) Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils. Geobiology 11:457–471

    Article  Google Scholar 

  • Lebon M, Reiche I, Bahain J-J et al (2010) New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. J Archaeol Sci 37:2265–2276

    Article  Google Scholar 

  • Lefevre CT, Bazylinski DA (2013) Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev 77:497–526

    Article  Google Scholar 

  • Li J, Benzerara K, Bernard S et al (2013a) The link between biomineralization and fossilization of bacteria: insights from field and experimental studies. Chem Geol 359:49–69

    Article  ADS  Google Scholar 

  • Li YL, Konhauser KO, Kappler A et al (2013b) Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations. Earth Planet Sci Lett 361:229–237

    Article  ADS  Google Scholar 

  • Li J, Bernard S, Benzerara K et al (2014) Impact of biomineralization on the preservation of microorganisms during fossilization: an experimental perspective. Earth Planet Sci Lett 400:113–122

    Article  ADS  Google Scholar 

  • Li J, Margaret Oliver I, Cam N et al (2016) Biomineralization patterns of intracellular carbonatogenesis in cyanobacteria: molecular hypotheses. Fortschr Mineral 6:10

    Article  Google Scholar 

  • Love LG (1957) Micro-organisms and the presence of syngenetic pyrite. Q J Geol Soc Lond 113:429–440

    Article  Google Scholar 

  • Lovley DR, Stolz J, Nord GLJ et al (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254

    Article  ADS  Google Scholar 

  • Ludwig R, Al-Horani FA, de Beer D et al (2005) Photosynthesis-controlled calcification in a hypersaline microbial mat. Limnol Oceanogr 50:1836–1843

    Article  ADS  Google Scholar 

  • MacFadden BJ, DeSantis LRG, Hochstein JL et al (2010) Physical properties, geochemistry, and diagenesis of xenarthran teeth: prospects for interpreting the paleoecology of extinct species. Palaeogeogr Palaeoclimatol Palaeoecol 291:180–189

    Article  Google Scholar 

  • MacLean LCW, Tyliszczak T, Gilbert PUPA et al (2008) A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology 6:471–480

    Article  Google Scholar 

  • Maurice S, Clegg SM, Wiens RC et al (2016) ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. J Anal At Spectrom 31:863–889

    Article  Google Scholar 

  • Mavromatis V, Bundeleva IA, Shirokova LS et al (2015) The continuous re-equilibration of carbon isotope compositions of hydrous Mg carbonates in the presence of cyanobacteria. Chem Geol 404:41–51

    Article  ADS  Google Scholar 

  • McLoughlin N, Grosch EGA (2015) Hierarchical system for evaluating the biogenicity of metavolcanic- and ultramafic-hosted microalteration textures in the search for extraterrestrial life. Astrobiology 15:901–921

    Article  ADS  Google Scholar 

  • Meldrum FC, Cölfen H (2008) Controlling mineral morphologies and structures in biological and synthetic systems. Chem Rev 108:4332–4432

    Article  Google Scholar 

  • Millard AR, Hedges REM (1996) A diffusion-adsorption model of uranium uptake by archaeological bone. Geochim Cosmochim Acta 60:2139–2152

    Article  ADS  Google Scholar 

  • Miot J, Etique M (2016) Formation and transformation of iron-bearing minerals by iron(ii)-oxidizing and iron(iii)-reducing bacteria. In: Faivre D (ed) Iron oxides. Wiley-VCH, Weinheim, pp 53–98

    Chapter  Google Scholar 

  • Miot J, Benzerara K, Morin G et al (2009a) Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochim Cosmochim Acta 73:696–711

    Article  ADS  Google Scholar 

  • Miot J, Benzerara K, Obst M et al (2009b) Extracellular Iron biomineralization by photoautotrophic iron-oxidizing bacteria. Appl Environ Microbiol 75:5586–5591

    Article  Google Scholar 

  • Miot J, Maclellan K, Benzerara K et al (2011) Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study: persistence of organics in mineralized Fe-oxidizing bacteria. Geobiology 9:459–470

    Article  Google Scholar 

  • Miot J, Li J, Benzerara K et al (2014a) Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation. Geochim Cosmochim Acta 139:327–343

    Article  ADS  Google Scholar 

  • Miot J, Recham N, Larcher D et al (2014b) Biomineralized α-Fe2O3: texture and electrochemical reaction with Li. Energy Environ Sci 7:451–460

    Article  Google Scholar 

  • Miot J, Jézéquel D, Benzerara K et al (2016) Mineralogical diversity in Lake Pavin: connections with water column chemistry and biomineralization processes. Fortschr Mineral 6:24

    Article  Google Scholar 

  • Murat D, Quinlan A, Vali H et al (2010) Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci USA 107:5593–5598

    Article  ADS  Google Scholar 

  • Nickel EH, Grice JD (1998) The IMA commission on new minerals and mineral names: procedures and guidelines on mineral nomenclature, 1998. Can Mineral 36:913–926

    Google Scholar 

  • Oaki Y, Imai H (2005) The hierarchical architecture of nacre and its mimetic material. Angew Chem 44:6571–6575

    Article  Google Scholar 

  • Ohfuji H, Akai J (2002) Icosahedral domain structure of framboidal pyrite. Am Mineral 87:176–180

    Article  ADS  Google Scholar 

  • Ohfuji H, Rickard D (2005) Experimental syntheses of framboids—a review. Earth Sci Rev 71:147–170

    Article  ADS  Google Scholar 

  • Parker RB, Toots H (1970) Minor elements in fossil bone. Geol Soc Am Bull 81:925

    Article  Google Scholar 

  • Picard A, Kappler A, Schmid G et al (2015) Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe(II)-oxidizing bacteria. Nat Commun 6:6277

    Article  Google Scholar 

  • Picard A, Obst M, Schmid G et al (2016) Limited influence of Si on the preservation of Fe mineral-encrusted microbial cells during experimental diagenesis. Geobiology 14:276–292

    Article  Google Scholar 

  • Pourret O, Davranche M, Gruau G et al (2007) Competition between humic acid and carbonates for rare earth elements complexation. J Colloid Interface Sci 305:25–31

    Article  ADS  Google Scholar 

  • Pucéat E, Reynard B, Lécuyer C (2004) Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chem Geol 205:83–97

    Article  ADS  Google Scholar 

  • Reynard B, Balter V (2014) Trace elements and their isotopes in bones and teeth: diet, environments, diagenesis, and dating of archeological and paleontological samples. Palaeogeogr Palaeoclimatol Palaeoecol 416:4–16

    Article  Google Scholar 

  • Riechelmann S, Mavromatis V, Buhl D et al (2016) Impact of diagenetic alteration on brachiopod shell magnesium isotope (δ26Mg) signatures: experimental versus field data. Chem Geol 440:191–206

    Article  ADS  Google Scholar 

  • Rogers K, Beckett S, Kuhn S et al (2010) Contrasting the crystallinity indicators of heated and diagenetically altered bone mineral. Palaeogeogr Palaeoclimatol Palaeoecol 296:125–129

    Article  Google Scholar 

  • Rust GW (1935) Colloidal primary copper ores at Cornwall Mines, southeastern Missouri. J Geol 43:398–426

    Article  ADS  Google Scholar 

  • Saghaï A, Zivanovic Y, Zeyen N et al (2015) Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites. Front Microbiol 6:797

    Article  Google Scholar 

  • Saghaï A, Zivanovic Y, Moreira D et al (2016) Comparative metagenomics unveils functions and genome features of microbialite-associated communities along a depth gradient. Environ Microbiol 18:4990–5004

    Article  Google Scholar 

  • Schultze-Lam S, Fortin D, Davis BS et al (1996) Mineralization of bacterial surfaces. Chem Geol 132:171–181

    Article  ADS  Google Scholar 

  • Sethmann I, Putnis A, Grassmann O et al (2005) Observation of nano-clustered calcite growth via a transient phase mediated by organic polyanions: a close match for biomineralization. Am Mineral 90:1213–1217

    Article  ADS  Google Scholar 

  • Shapiro RS, Konhauser KO (2015) Hematite-coated microfossils: primary ecological fingerprint or taphonomic oddity of the Paleoproterozoic? Geobiology 13:209–224

    Article  Google Scholar 

  • Shiraki R, Brantley SL (1995) Kinetics of near-equilibrium calcite precipitation at 100°C: an evaluation of elementary reaction-based and affinity-based rate laws. Geochim Cosmochim Acta 59:1457–1471

    Article  ADS  Google Scholar 

  • Sievert SM, Wieringa EBA, Wirsen CO et al (2007) Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Environ Microbiol 9:271–276

    Article  Google Scholar 

  • Thar R, Kuhl M (2001) Motility of Marichromatium gracile in response to light, oxygen, and sulfide. Appl Environ Microbiol 67:5410–5419

    Article  Google Scholar 

  • Thar R, Kuhl M (2003) Bacteria are not too small for spatial sensing of chemical gradients: an experimental evidence. Proc Natl Acad Sci USA 100:5748–5753

    Article  ADS  Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA et al (2001) Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc Natl Acad Sci USA 98:2164–2169

    Article  ADS  Google Scholar 

  • Trueman CN, Behrensmeyer AK, Tuross N et al (2004) Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. J Archaeol Sci 31:721–739

    Article  Google Scholar 

  • Vali H, Weiss B, Li Y-L et al (2004) Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. Proc Natl Acad Sci USA 101:16121–16126

    Article  ADS  Google Scholar 

  • Wacey D, Kilburn MR, Saunders M et al (2015) Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping. Geology 43:27–30

    Article  ADS  Google Scholar 

  • Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 54:1–29

    Article  Google Scholar 

  • Wilkin RT, Barnes HL (1997) Formation process of framboidal pyrite. Geochim Cosmochim Acta 61:323–339

    Article  ADS  Google Scholar 

  • Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim Acta 60:3897–3912

    Article  ADS  Google Scholar 

  • Yang H, Sun HJ, Downs RT (2011) Hazenite, KNaMg2(PO4)2.14H2O, a new biologically related phosphate mineral, from Mono Lake, California, USA. Am Mineral 96:675–681

    Article  ADS  Google Scholar 

  • Yi H, Balan E, Gervais C et al (2014) Probing atomic scale transformation of fossil dental enamel using Fourier transform infrared and nuclear magnetic resonance spectroscopy: a case study from the Tugen Hills (Rift Gregory, Kenya). Acta Biomater 10:3952–3958

    Article  Google Scholar 

  • Zazzo A, Saliège J-F (2011) Radiocarbon dating of biological apatites: a review. Palaeogeogr Palaeoclimatol Palaeoecol 310:52–61

    Article  Google Scholar 

  • Zazzo A, Lécuyer C, Sheppard SMF et al (2004) Diagenesis and the reconstruction of paleoenvironments: a method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel. Geochim Cosmochim Acta 68:2245–2258

    Article  ADS  Google Scholar 

  • Zeyen N, Benzerara K, Li J et al (2015) Microbial formation of low-T hydrated silicates in modern microbialites from Mexico. Front Earth Sci 3:64

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Karim Benzerara was supported by funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013 Grant Agreement no. 307110—ERC CALCYAN). Sylvain Bernard was supported by funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013 Grant Agreement no. 161764—ERC PaleoNanoLife—PI: F. Robert). Jennyfer Miot was supported by funding from the French Agence Nationale de la Recherche (ANR SRB project, grant ANR-14-CE33-0003-01). The SEM facility of the IMPMC is supported by Région Ile de France grant SESAME 2006 N°I-07-593/R, INSU/CNRS, UPMC-Paris 6, and by the Agence Nationale de la Recherche (ANR grant No. ANR-07-BLAN-0124-01. We thank Sebastien Charron and Imene Esteve for their expert support of the SEM at IMPMC. The TEM facility at IMPMC is supported by Région Ile de France grant SESAME 2000 E 1435. We thank Jean-Michel Guigner for his expert support of the TEM at IMPMC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Benzerara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benzerara, K., Bernard, S., Miot, J. (2019). Mineralogical Identification of Traces of Life. In: Cavalazzi, B., Westall, F. (eds) Biosignatures for Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-96175-0_6

Download citation

Publish with us

Policies and ethics