Advertisement

Mineralogical Identification of Traces of Life

  • Karim BenzeraraEmail author
  • Sylvain Bernard
  • Jennyfer Miot
Chapter
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)

Abstract

Many organisms impact mineral nucleation and growth. This results in the formation of biominerals with chemical, structural and textural properties providing clues to their biogenicity. However, ageing modifies these properties to some extent. Moreover, some abiotic processes form minerals with similar properties. Therefore, decoding traces of life in minerals requires caution, and one prerequisite is a reliable estimation of the geochemical conditions under which a biomineral formed. Here we discuss several examples of biominerals which illustrate these different ideas.

Notes

Acknowledgements

Karim Benzerara was supported by funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013 Grant Agreement no. 307110—ERC CALCYAN). Sylvain Bernard was supported by funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013 Grant Agreement no. 161764—ERC PaleoNanoLife—PI: F. Robert). Jennyfer Miot was supported by funding from the French Agence Nationale de la Recherche (ANR SRB project, grant ANR-14-CE33-0003-01). The SEM facility of the IMPMC is supported by Région Ile de France grant SESAME 2006 N°I-07-593/R, INSU/CNRS, UPMC-Paris 6, and by the Agence Nationale de la Recherche (ANR grant No. ANR-07-BLAN-0124-01. We thank Sebastien Charron and Imene Esteve for their expert support of the SEM at IMPMC. The TEM facility at IMPMC is supported by Région Ile de France grant SESAME 2000 E 1435. We thank Jean-Michel Guigner for his expert support of the TEM at IMPMC.

References

  1. Alleon J, Bernard S, Le Guillou C et al (2016) Early entombment within silica minimizes the molecular degradation of microorganisms during advanced diagenesis. Chem Geol 437:98–108ADSCrossRefGoogle Scholar
  2. Aloisi G (2008) The calcium carbonate saturation state in cyanobacterial mats throughout Earth’s history. Geochim Cosmochim Acta 72:6037–6060ADSCrossRefGoogle Scholar
  3. Amor M, Busigny V, Durand-Dubief M et al (2015) Chemical signature of magnetotactic bacteria. Proc Natl Acad Sci USA 112:1699–1703ADSCrossRefGoogle Scholar
  4. Amor M, Busigny V, Louvat P et al (2016) Mass-dependent and -independent signature of Fe isotopes in magnetotactic bacteria. Science 352:705–708ADSCrossRefGoogle Scholar
  5. Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292:1701–1704ADSCrossRefGoogle Scholar
  6. Banfield JF (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754ADSCrossRefGoogle Scholar
  7. Banfield JF, Moreau JW, Chan CS et al (2001) Mineralogical biosignatures and the search for life on Mars. Astrobiology 1:447–465ADSCrossRefGoogle Scholar
  8. Barabesi C, Galizzi A, Mastromei G et al (2007) Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J Bacteriol 189:228–235CrossRefGoogle Scholar
  9. Barber DJ, Scott ERD (2002) Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001. Proc Natl Acad Sci USA 99:6556–6561ADSCrossRefGoogle Scholar
  10. Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230CrossRefGoogle Scholar
  11. Bell MS (2007) Experimental shock decomposition of siderite and the origin of magnetite in Martian meteorite ALH 84001. Meteorit Planet Sci 42:935–949ADSCrossRefGoogle Scholar
  12. Benzerara K, Menguy N (2009) Looking for traces of life in minerals. CR Palevol 8:617–628CrossRefGoogle Scholar
  13. Benzerara K, Miot J (2011) Biomineralization mechanisms. In: Gargaud M, López-Garcia P, Martin H (eds) Origins and evolution of life – an astrobiological perspective. Cambridge University Press, Cambridge, pp 450–468Google Scholar
  14. Benzerara K, Menguy N, Guyot F et al (2004) Biologically controlled precipitation of calcium phosphate by Ramlibacter tataouinensis. Earth Planet Sci Lett 228:439–449ADSCrossRefGoogle Scholar
  15. Benzerara K, Menguy N, López-García P et al (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc Natl Acad Sci USA 103:9440–9445ADSCrossRefGoogle Scholar
  16. Benzerara K, Meibom A, Gautier Q et al (2010) Nanotextures of aragonite in stromatolites from the quasi-marine Satonda crater lake, Indonesia. In: Pedley HM, Rogerson M (eds) Tufas and speleothems: unravelling the microbial and physical controls, vol 336. Geological Society, London, Special Publications, pp 211–224ADSCrossRefGoogle Scholar
  17. Benzerara K, Menguy N, Obst M et al (2011) Study of the crystallographic architecture of corals at the nanoscale by scanning transmission x-ray microscopy and transmission electron microscopy. Ultramicroscopy 111:1268–1275CrossRefGoogle Scholar
  18. Benzerara K, Skouri-Panet F, Li J et al (2014) Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc Natl Acad Sci USA 111:10933–10938ADSCrossRefGoogle Scholar
  19. Bernard S, Benzerara K, Beyssac O et al (2015) Evolution of the macromolecular structure of sporopollenin during thermal degradation. Heliyon 1:e00034CrossRefGoogle Scholar
  20. Braissant O, Decho AW, Dupraz C et al (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411CrossRefGoogle Scholar
  21. Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. PALAIOS 2:241–254ADSCrossRefGoogle Scholar
  22. Burton EA, Walter LM (1987) Relative precipitation rates of aragonite and Mg calcite from seawater-temperature or carbonate ion control. Geology 15:111–114ADSCrossRefGoogle Scholar
  23. Butler IB, Rickard D (2000) Framboidal pyrite formation via the oxidation of iron(II) monosulfide by hydrogen sulfide. Geochim Cosmochim Acta 64:2665–2672ADSCrossRefGoogle Scholar
  24. Cam N, Benzerara K, Georgelin T et al (2016) Selective uptake of alkaline earth metals by cyanobacteria forming intracellular carbonates. Environ Sci Technol 50:11654–11662ADSCrossRefGoogle Scholar
  25. Cam N, Benzerara K, Georgelin T et al (2018) Cyanobacterial formation of intracellular Ca-carbonates in undersaturated solutions. Geobiology 16:49–61CrossRefGoogle Scholar
  26. Chan CS (2004) Microbial polysaccharides template assembly of nanocrystal fibers. Science 303:1656–1658ADSCrossRefGoogle Scholar
  27. Chan CS, Fakra SC, Edwards DC et al (2009) Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim Cosmochim Acta 73:3807–3818ADSCrossRefGoogle Scholar
  28. Chan CS, Fakra SC, Emerson D et al (2011) Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J 5:717–727CrossRefGoogle Scholar
  29. Coker VS, Byrne JM, Telling ND et al (2012) Characterisation of the dissimilatory reduction of Fe(III)-oxyhydroxide at the microbe – mineral interface: the application of STXM-XMCD: STXM-XMCD of microbial Fe(III)-reduction. Geobiology 10:47–354CrossRefGoogle Scholar
  30. Cölfen H, Antonietti M (2008) Mesocrystals and nonclassical crystallization. Wiley, ChichesterCrossRefGoogle Scholar
  31. Cosmidis J, Templeton AS (2016) Self-assembly of biomorphic carbon/sulfur microstructures in sulfidic environments. Nat Commun 7:12812ADSCrossRefGoogle Scholar
  32. Cosmidis J, Benzerara K, Gheerbrant E et al (2013) Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco). Geobiology 11:139–153CrossRefGoogle Scholar
  33. Cosmidis J, Benzerara K, Morin G et al (2014) Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France). Geochim Cosmochim Acta 126:78–96ADSCrossRefGoogle Scholar
  34. Couradeau E, Benzerara K, Gerard E et al (2012) An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336:459–462ADSCrossRefGoogle Scholar
  35. Couradeau E, Benzerara K, Gérard E et al (2013) Cyanobacterial calcification in modern microbialites at the submicrometer scale. Biogeosciences 10:5255–5266ADSCrossRefGoogle Scholar
  36. De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. Rev Mineral Geochem 54:57–93CrossRefGoogle Scholar
  37. De Yoreo JJ, Gilbert PU, Sommerdijk NA et al (2015) Crystal growth. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 31:aaa6760CrossRefGoogle Scholar
  38. Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438CrossRefGoogle Scholar
  39. Dupraz C, Reid RP, Braissant O et al (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162ADSCrossRefGoogle Scholar
  40. Edgar KM, Anagnostou E, Pearson PN et al (2015) Assessing the impact of diagenesis on δ11B, δ13C, δ18O, Sr/Ca and B/Ca values in fossil planktic foraminiferal calcite. Geochim Cosmochim Acta 166:189–209ADSCrossRefGoogle Scholar
  41. Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561–583CrossRefGoogle Scholar
  42. Faivre D, Schüler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108:4875–4898CrossRefGoogle Scholar
  43. Folk RL (2005) Nannobacteria and the formation of framboidal pyrite: textural evidence. J Earth Syst Sci 114:369–374ADSCrossRefGoogle Scholar
  44. Garcia-Ruiz JM, Hyde ST, Carnerup AM et al (2003) Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302:1194–1197ADSCrossRefGoogle Scholar
  45. Garcia-Ruiz JM, Melero-Garcia E, Hyde ST (2009) Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 323:362–365ADSCrossRefGoogle Scholar
  46. Giuffre AJ, Hamm LM, Han N et al (2013) Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc Natl Acad Sci USA 110:9261–9266ADSCrossRefGoogle Scholar
  47. Golden DC, Ming DW, Morris RV et al (2004) Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. Am Mineral 89:681–695ADSCrossRefGoogle Scholar
  48. Grunenwald A, Keyser C, Sautereau AM et al (2014) Adsorption of DNA on biomimetic apatites: toward the understanding of the role of bone and tooth mineral on the preservation of ancient DNA. Appl Surf Sci 292:867–875ADSCrossRefGoogle Scholar
  49. Guida BS, Garcia-Pichel F (2016) Extreme cellular adaptations and cell differentiation required by a cyanobacterium for carbonate excavation. Proc Natl Acad Sci USA 113:5712–5717ADSCrossRefGoogle Scholar
  50. Hazen RM, Ausubel JH (2016) On the nature and significance of rarity in mineralogy. Am Mineral 101:1245–1251ADSCrossRefGoogle Scholar
  51. Hazen RM, Papineau D, Leeker WB et al (2008) Mineral evolution. Am Mineral 93:11–12CrossRefGoogle Scholar
  52. Herwartz D, Tütken T, Jochum KP et al (2013) Rare earth element systematics of fossil bone revealed by LA-ICPMS analysis. Geochim Cosmochim Acta 103:161–183ADSCrossRefGoogle Scholar
  53. Kalliokoski J, Cathles L (1969) Morphology, mode of formation and diagenetic changes in framboids. Bull Geol Soc Finl 41:125–133CrossRefGoogle Scholar
  54. Keenan SW (2016) From bone to fossil: a review of the diagenesis of bioapatite. Am Mineral 101:1943–1951ADSCrossRefGoogle Scholar
  55. Kohn MJ, Riciputi LR, Stakes D et al (1998) Sulfur isotope variability in biogenic pyrite: reflections of heterogeneous bacterial colonization? Am Mineral 83:1454–1468ADSCrossRefGoogle Scholar
  56. Kopp RE, Kirschvink JL (2008) The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth Sci Rev 86:42–61ADSCrossRefGoogle Scholar
  57. Krepski ST, Emerson D, Hredzak-Showalter PL et al (2013) Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils. Geobiology 11:457–471CrossRefGoogle Scholar
  58. Lebon M, Reiche I, Bahain J-J et al (2010) New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. J Archaeol Sci 37:2265–2276CrossRefGoogle Scholar
  59. Lefevre CT, Bazylinski DA (2013) Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev 77:497–526CrossRefGoogle Scholar
  60. Li J, Benzerara K, Bernard S et al (2013a) The link between biomineralization and fossilization of bacteria: insights from field and experimental studies. Chem Geol 359:49–69ADSCrossRefGoogle Scholar
  61. Li YL, Konhauser KO, Kappler A et al (2013b) Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations. Earth Planet Sci Lett 361:229–237ADSCrossRefGoogle Scholar
  62. Li J, Bernard S, Benzerara K et al (2014) Impact of biomineralization on the preservation of microorganisms during fossilization: an experimental perspective. Earth Planet Sci Lett 400:113–122ADSCrossRefGoogle Scholar
  63. Li J, Margaret Oliver I, Cam N et al (2016) Biomineralization patterns of intracellular carbonatogenesis in cyanobacteria: molecular hypotheses. Fortschr Mineral 6:10CrossRefGoogle Scholar
  64. Love LG (1957) Micro-organisms and the presence of syngenetic pyrite. Q J Geol Soc Lond 113:429–440CrossRefGoogle Scholar
  65. Lovley DR, Stolz J, Nord GLJ et al (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254ADSCrossRefGoogle Scholar
  66. Ludwig R, Al-Horani FA, de Beer D et al (2005) Photosynthesis-controlled calcification in a hypersaline microbial mat. Limnol Oceanogr 50:1836–1843ADSCrossRefGoogle Scholar
  67. MacFadden BJ, DeSantis LRG, Hochstein JL et al (2010) Physical properties, geochemistry, and diagenesis of xenarthran teeth: prospects for interpreting the paleoecology of extinct species. Palaeogeogr Palaeoclimatol Palaeoecol 291:180–189CrossRefGoogle Scholar
  68. MacLean LCW, Tyliszczak T, Gilbert PUPA et al (2008) A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology 6:471–480CrossRefGoogle Scholar
  69. Maurice S, Clegg SM, Wiens RC et al (2016) ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. J Anal At Spectrom 31:863–889CrossRefGoogle Scholar
  70. Mavromatis V, Bundeleva IA, Shirokova LS et al (2015) The continuous re-equilibration of carbon isotope compositions of hydrous Mg carbonates in the presence of cyanobacteria. Chem Geol 404:41–51ADSCrossRefGoogle Scholar
  71. McLoughlin N, Grosch EGA (2015) Hierarchical system for evaluating the biogenicity of metavolcanic- and ultramafic-hosted microalteration textures in the search for extraterrestrial life. Astrobiology 15:901–921ADSCrossRefGoogle Scholar
  72. Meldrum FC, Cölfen H (2008) Controlling mineral morphologies and structures in biological and synthetic systems. Chem Rev 108:4332–4432CrossRefGoogle Scholar
  73. Millard AR, Hedges REM (1996) A diffusion-adsorption model of uranium uptake by archaeological bone. Geochim Cosmochim Acta 60:2139–2152ADSCrossRefGoogle Scholar
  74. Miot J, Etique M (2016) Formation and transformation of iron-bearing minerals by iron(ii)-oxidizing and iron(iii)-reducing bacteria. In: Faivre D (ed) Iron oxides. Wiley-VCH, Weinheim, pp 53–98CrossRefGoogle Scholar
  75. Miot J, Benzerara K, Morin G et al (2009a) Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochim Cosmochim Acta 73:696–711ADSCrossRefGoogle Scholar
  76. Miot J, Benzerara K, Obst M et al (2009b) Extracellular Iron biomineralization by photoautotrophic iron-oxidizing bacteria. Appl Environ Microbiol 75:5586–5591CrossRefGoogle Scholar
  77. Miot J, Maclellan K, Benzerara K et al (2011) Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study: persistence of organics in mineralized Fe-oxidizing bacteria. Geobiology 9:459–470CrossRefGoogle Scholar
  78. Miot J, Li J, Benzerara K et al (2014a) Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation. Geochim Cosmochim Acta 139:327–343ADSCrossRefGoogle Scholar
  79. Miot J, Recham N, Larcher D et al (2014b) Biomineralized α-Fe2O3: texture and electrochemical reaction with Li. Energy Environ Sci 7:451–460CrossRefGoogle Scholar
  80. Miot J, Jézéquel D, Benzerara K et al (2016) Mineralogical diversity in Lake Pavin: connections with water column chemistry and biomineralization processes. Fortschr Mineral 6:24CrossRefGoogle Scholar
  81. Murat D, Quinlan A, Vali H et al (2010) Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci USA 107:5593–5598ADSCrossRefGoogle Scholar
  82. Nickel EH, Grice JD (1998) The IMA commission on new minerals and mineral names: procedures and guidelines on mineral nomenclature, 1998. Can Mineral 36:913–926Google Scholar
  83. Oaki Y, Imai H (2005) The hierarchical architecture of nacre and its mimetic material. Angew Chem 44:6571–6575CrossRefGoogle Scholar
  84. Ohfuji H, Akai J (2002) Icosahedral domain structure of framboidal pyrite. Am Mineral 87:176–180ADSCrossRefGoogle Scholar
  85. Ohfuji H, Rickard D (2005) Experimental syntheses of framboids—a review. Earth Sci Rev 71:147–170ADSCrossRefGoogle Scholar
  86. Parker RB, Toots H (1970) Minor elements in fossil bone. Geol Soc Am Bull 81:925CrossRefGoogle Scholar
  87. Picard A, Kappler A, Schmid G et al (2015) Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe(II)-oxidizing bacteria. Nat Commun 6:6277CrossRefGoogle Scholar
  88. Picard A, Obst M, Schmid G et al (2016) Limited influence of Si on the preservation of Fe mineral-encrusted microbial cells during experimental diagenesis. Geobiology 14:276–292CrossRefGoogle Scholar
  89. Pourret O, Davranche M, Gruau G et al (2007) Competition between humic acid and carbonates for rare earth elements complexation. J Colloid Interface Sci 305:25–31ADSCrossRefGoogle Scholar
  90. Pucéat E, Reynard B, Lécuyer C (2004) Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chem Geol 205:83–97ADSCrossRefGoogle Scholar
  91. Reynard B, Balter V (2014) Trace elements and their isotopes in bones and teeth: diet, environments, diagenesis, and dating of archeological and paleontological samples. Palaeogeogr Palaeoclimatol Palaeoecol 416:4–16CrossRefGoogle Scholar
  92. Riechelmann S, Mavromatis V, Buhl D et al (2016) Impact of diagenetic alteration on brachiopod shell magnesium isotope (δ26Mg) signatures: experimental versus field data. Chem Geol 440:191–206ADSCrossRefGoogle Scholar
  93. Rogers K, Beckett S, Kuhn S et al (2010) Contrasting the crystallinity indicators of heated and diagenetically altered bone mineral. Palaeogeogr Palaeoclimatol Palaeoecol 296:125–129CrossRefGoogle Scholar
  94. Rust GW (1935) Colloidal primary copper ores at Cornwall Mines, southeastern Missouri. J Geol 43:398–426ADSCrossRefGoogle Scholar
  95. Saghaï A, Zivanovic Y, Zeyen N et al (2015) Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites. Front Microbiol 6:797CrossRefGoogle Scholar
  96. Saghaï A, Zivanovic Y, Moreira D et al (2016) Comparative metagenomics unveils functions and genome features of microbialite-associated communities along a depth gradient. Environ Microbiol 18:4990–5004CrossRefGoogle Scholar
  97. Schultze-Lam S, Fortin D, Davis BS et al (1996) Mineralization of bacterial surfaces. Chem Geol 132:171–181ADSCrossRefGoogle Scholar
  98. Sethmann I, Putnis A, Grassmann O et al (2005) Observation of nano-clustered calcite growth via a transient phase mediated by organic polyanions: a close match for biomineralization. Am Mineral 90:1213–1217ADSCrossRefGoogle Scholar
  99. Shapiro RS, Konhauser KO (2015) Hematite-coated microfossils: primary ecological fingerprint or taphonomic oddity of the Paleoproterozoic? Geobiology 13:209–224CrossRefGoogle Scholar
  100. Shiraki R, Brantley SL (1995) Kinetics of near-equilibrium calcite precipitation at 100°C: an evaluation of elementary reaction-based and affinity-based rate laws. Geochim Cosmochim Acta 59:1457–1471ADSCrossRefGoogle Scholar
  101. Sievert SM, Wieringa EBA, Wirsen CO et al (2007) Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Environ Microbiol 9:271–276CrossRefGoogle Scholar
  102. Thar R, Kuhl M (2001) Motility of Marichromatium gracile in response to light, oxygen, and sulfide. Appl Environ Microbiol 67:5410–5419CrossRefGoogle Scholar
  103. Thar R, Kuhl M (2003) Bacteria are not too small for spatial sensing of chemical gradients: an experimental evidence. Proc Natl Acad Sci USA 100:5748–5753ADSCrossRefGoogle Scholar
  104. Thomas-Keprta KL, Clemett SJ, Bazylinski DA et al (2001) Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc Natl Acad Sci USA 98:2164–2169ADSCrossRefGoogle Scholar
  105. Trueman CN, Behrensmeyer AK, Tuross N et al (2004) Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. J Archaeol Sci 31:721–739CrossRefGoogle Scholar
  106. Vali H, Weiss B, Li Y-L et al (2004) Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. Proc Natl Acad Sci USA 101:16121–16126ADSCrossRefGoogle Scholar
  107. Wacey D, Kilburn MR, Saunders M et al (2015) Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping. Geology 43:27–30ADSCrossRefGoogle Scholar
  108. Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 54:1–29CrossRefGoogle Scholar
  109. Wilkin RT, Barnes HL (1997) Formation process of framboidal pyrite. Geochim Cosmochim Acta 61:323–339ADSCrossRefGoogle Scholar
  110. Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim Acta 60:3897–3912ADSCrossRefGoogle Scholar
  111. Yang H, Sun HJ, Downs RT (2011) Hazenite, KNaMg2(PO4)2.14H2O, a new biologically related phosphate mineral, from Mono Lake, California, USA. Am Mineral 96:675–681ADSCrossRefGoogle Scholar
  112. Yi H, Balan E, Gervais C et al (2014) Probing atomic scale transformation of fossil dental enamel using Fourier transform infrared and nuclear magnetic resonance spectroscopy: a case study from the Tugen Hills (Rift Gregory, Kenya). Acta Biomater 10:3952–3958CrossRefGoogle Scholar
  113. Zazzo A, Saliège J-F (2011) Radiocarbon dating of biological apatites: a review. Palaeogeogr Palaeoclimatol Palaeoecol 310:52–61CrossRefGoogle Scholar
  114. Zazzo A, Lécuyer C, Sheppard SMF et al (2004) Diagenesis and the reconstruction of paleoenvironments: a method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel. Geochim Cosmochim Acta 68:2245–2258ADSCrossRefGoogle Scholar
  115. Zeyen N, Benzerara K, Li J et al (2015) Microbial formation of low-T hydrated silicates in modern microbialites from Mexico. Front Earth Sci 3:64ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Karim Benzerara
    • 1
    Email author
  • Sylvain Bernard
    • 1
  • Jennyfer Miot
    • 1
  1. 1.Muséum National d’Histoire Naturelle, Sorbonne Université, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de CosmochimieParisFrance

Personalised recommendations