Advertisement

A Systematic Way to Life Detection: Combining Field, Lab and Space Research in Low Earth Orbit

  • Jean-Pierre de VeraEmail author
  • The Life Detection Group of BIOMEX/BIOSIGN
Chapter
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)

Abstract

The characterization and detection of biosignatures is a challenging task, but one that needs to be solved before instruments are used for life detection missions on other planets and moons. A complex logistical effort is needed to support such exploration missions and a significant amount of preparation and investigation is required to prevent and eliminate pitfalls and errors, which may occur during the technical and scientific operations. Herein is suggested a systematic approach to prepare for “life-detection” missions, and an overview is given on the necessary steps in order to search for life in-situ on another planet or moon. Results obtained from research performed in the field, in the lab and in space will help to enhance our knowledge regarding the traces and signatures of life, and how to recognize life itself.

References

  1. Banfield JF, Moreau JW, Chan CS et al (2001) Mineralogical biosignatures and the search for life on Mars. Astrobiology 1:447–465ADSCrossRefGoogle Scholar
  2. Baqué M, Verseux C, Böttger U et al (2016) Preservation of biomarkers from cyanobacteria mixed with Mars-like regolith under simulated Martian atmosphere and UV flux. Orig Life Evol Biosph 46:289–310ADSCrossRefGoogle Scholar
  3. Bibring J-P, Langevin Y, Gendrin A et al (2005) Mars surface diversity as revealed by the OMEGA/Mars express observations. Science 307:1576–1581ADSCrossRefGoogle Scholar
  4. Bibring J-P, Squyres SW, Arvidson RE (2006) Merging views on Mars. Science 313:1899–1901CrossRefGoogle Scholar
  5. Böttger U, de Vera J-P, Fritz J et al (2012) Optimizing the detection of carotene in cyanobacteria in a Martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planet Space Sci 60:356–362ADSCrossRefGoogle Scholar
  6. Böttger U, de la Torre R, Frias J-M et al (2013a) Raman spectroscopic analysis of the oxalate producing extremophile Circinaria Gyrosa. Int J Astrobiol 13:19–27CrossRefGoogle Scholar
  7. Böttger U, de Vera J-P, Hermelink A et al (2013b) Application of Raman spectroscopy, as in situ technology for the search for life. In: de Vera JP, Seckbach J (eds) Cellular origins, life in extreme habitats and astrobiology 28: habitability of other planets and satellites. Springer, Berlin, pp 333–345Google Scholar
  8. Cady SL, Farmer JD, Grotzinger JP et al (2003) Morphological biosignatures and the search for life on Mars. Astrobiology 3:351–368ADSCrossRefGoogle Scholar
  9. Chevrier V, Mathé PE (2007) Mineralogy and evolution of the surface of Mars: a review. Planet Space Sci 55:289–314ADSCrossRefGoogle Scholar
  10. Cockell CS, Brack A, Wynn-Williams DD et al (2007) Interplanetary transfer of photosynthesis: an experimental demonstration of a selective dispersal filter in planetary island biogeography. Astrobiology 7:1–9ADSCrossRefGoogle Scholar
  11. Cockell CS, Bush T, Bryce C et al (2016) Habitability: a review. Astrobiology 16:89–117ADSCrossRefGoogle Scholar
  12. Dartnell LR, Patel MR (2014) Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars. Int J Astrobiol 13:112–123CrossRefGoogle Scholar
  13. Dartnell LR, Page K, Jorge-Villar SE et al (2012) Destruction of Raman biosignatures by ionising radiation and the implications for life detection on Mars. Anal Bioanal Chem 403:131–144CrossRefGoogle Scholar
  14. de la Torre R, Sancho L, Horneck G et al (2010) Survival of lichens and bacteria exposed to outer space conditions-results of the Lithopanspermia experiments. Icarus 208:735–748ADSCrossRefGoogle Scholar
  15. de Vera J-P, Böttger U, de la Torre R et al (2012) Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology. Planet Space Sci 74:103–110ADSCrossRefGoogle Scholar
  16. Demets R, Schulte W, Baglioni P (2005) The past, present and future Biopan. Adv Space Res 36:311–316ADSCrossRefGoogle Scholar
  17. Direito SOL, Ehrenfreund P, Marees A et al (2011) A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah). Int J Astrobiol 10:191–207CrossRefGoogle Scholar
  18. Dong Y, Hill TW, Teolis BD et al (2011) The water vapor plumes of Enceladus. J Geophys Res 116:A10204ADSGoogle Scholar
  19. Ehrenfreund P, Röling WFM, Thiel C et al (2011) Astrobiolgy and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota. Int J Astrobiol 10:239–253CrossRefGoogle Scholar
  20. Fischer E, Martínez GM, Renno NO (2016) Formation and persistence of brine on Mars: experimental simulations throughout the diurnal cycle at the phoenix landing site. Astrobiology 16:937–948ADSCrossRefGoogle Scholar
  21. Foing BH, Stoker C, Zavaleta J et al (2011) Field astrobiology research in Moon-Mars analogue environments: instruments and methods. Int J Astrobiol 10:141–160CrossRefGoogle Scholar
  22. Foucher F, Westall F, Brandstätter F et al (2010) Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth’s atmosphere: the STONE 6 experiment. Icarus 207:616–630ADSCrossRefGoogle Scholar
  23. Gleeson DF, Pappalardo RT, Anderson MS et al (2012) Biosignature detection at an Arctic analog to Europa. Astrobiology 12:135–150ADSCrossRefGoogle Scholar
  24. Hand KP, Carlson RW, Chyba CF (2007) Energy, chemical disequilibrium, and geological constraints on Europa. Astrobiology 7:1006–1022ADSCrossRefGoogle Scholar
  25. Head JW, Wilson L, Mitchell KL (2003) Generation of recent massive water floods at Cerberus Fossae, Mars by dike emplacement, cryospheric cracking, and confined aquifer groundwater release. Geophys Res Lett 30:1577ADSCrossRefGoogle Scholar
  26. Hsu H-W, Postberg F, Sekine Y et al (2015) Ongoing hydrothermal activities within Enceladus. Nature 519:207–210ADSCrossRefGoogle Scholar
  27. Iess L, Stevenson DJ, Parisi M et al (2014) The gravity field and interior structure of enceladus. Science 344:78–80ADSCrossRefGoogle Scholar
  28. Kawaguchi Y, Yokobori S, Hashimoto H et al (2016) Investigation of the interplanetary transfer of microbes in the tanpopo mission at the exposed facility of the international space station. Astrobiology 16:363–376ADSCrossRefGoogle Scholar
  29. Martins Z, Sephton MA, Foing BH et al (2011) Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. Int J Astrobiol 10:231–238CrossRefGoogle Scholar
  30. McKay CP, Anbar AD, Porco C et al (2014) Follow the plume: the habitability of enceladus. Astrobiology 14:352–355ADSCrossRefGoogle Scholar
  31. McMahon S, O’Malley-James J, Parnell J (2013) Circumstellar habitable zones for deep terrestrial biospheres. Planet Space Sci 85:312–318ADSCrossRefGoogle Scholar
  32. Onofri S, de la Torre R, de Vera J-P et al (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516ADSCrossRefGoogle Scholar
  33. Onofri S, de Vera J-P, Zucconi L et al (2015) Survival of Antarctic cryptoendolithic fungi in simulated martian conditions on board the International Space Station. Astrobiology 15:1052–1059ADSCrossRefGoogle Scholar
  34. Orzechowska GE, Kidd RD, Foing BH et al (2011) Analysis of Mars analogue soil samples using solid-phase microextraction, organic solvent extraction and gas chromatography/mass spectrometry. Int J Astrobiol 10:209–219CrossRefGoogle Scholar
  35. Pacelli C, Selbmann L, Zucconi L et al (2016) BIOMEX experiment: ultrastructural alterations, molecular damage and survival of the fungus Cryomyces antarcticus after the experiment verification tests. Orig Life Evol Biosph 47:187–202ADSCrossRefGoogle Scholar
  36. Pacelli C, Selbmann L, Zucconi L et al (2017) Survival, DNA integrity, and ultrastructural damage in Antarctic cryptoendolithic eukaryotic microorganisms exposed to ionizing radiation. Astrobiology 17:126–135ADSCrossRefGoogle Scholar
  37. Postberg F, Schmidt J, Hillier J et al (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–622ADSCrossRefGoogle Scholar
  38. Poulet F, Bibring JP, Mustard JF et al (2005) Phyllosilicates on Mars and implications for early Martian climate. Nature 438:623–627ADSCrossRefGoogle Scholar
  39. Rabbow E, Rettberg P, Barczyk S et al (2012) EXPOSE-E: an ESA astrobiology mission 1.5 years in space. Astrobiology 12:374–386ADSCrossRefGoogle Scholar
  40. Rabbow E, Rettberg P, Barczyk S et al (2015) The astrobiological mission EXPOSE-R on board of the International Space Station. Int J Astrobiol 14:3–16CrossRefGoogle Scholar
  41. Raggio J, Pintado A, Ascaso C et al (2011) Whole lichen Thalli survive exposure to space conditions: results of lithopanspermia experiment with Aspicilia fruticulosa. Astrobiology 11:281–292ADSCrossRefGoogle Scholar
  42. Rauer H, Gebauer S, Pv P et al (2011) Potential biosignatures in super-Earth atmospheres – I Spectral appearance of super-Earths around M dwarfs. Astron Astrophys 529:A8CrossRefGoogle Scholar
  43. Roth L, Saur J, Retherford KD et al (2014) Transient water vapor at Europa’s south pole. Science 343:171–174ADSCrossRefGoogle Scholar
  44. Schirmack J, Alawi M, Wagner D (2015) Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation. Front Microbiol 6:210CrossRefGoogle Scholar
  45. Serrano P, Hermelink A, Böttger U et al (2014) Biosignature detection of methanogenic archaea from Siberian permafrost using confocal Raman spectroscopy. Planet Space Sci 98:191–197ADSCrossRefGoogle Scholar
  46. Serrano P, Hermelink A, Lasch P et al (2015) Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil. FEMS Microbiol Ecol 91:fiv126CrossRefGoogle Scholar
  47. Waite JH Jr, Lewis WS, Magee BA et al (2009) Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460:487–490ADSCrossRefGoogle Scholar
  48. Westall F, Foucher F, Bost N et al (2015) Biosignatures on Mars: what, where, and how? Implications for the search for Martian life. Astrobiology 15:998–1029ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jean-Pierre de Vera
    • 1
    Email author
  • The Life Detection Group of BIOMEX/BIOSIGN
  1. 1.German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Astrobiological LaboratoriesBerlinGermany

Personalised recommendations