Biosignatures of Cellular Components and Metabolic Activity

  • David J. Des MaraisEmail author
  • Linda L. Jahnke
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)


The astrobiological search for biosignatures requires a working concept of the fundamental attributes of life. Life’s basic capabilities of energy harvesting, metabolism, and self-replication can create objects, substances and patterns—biosignatures—that indicate their biological origins. High relative abundances of certain lipids, hydrocarbons, amino acids and polysaccharides are diagnostic products of billions of years of evolution. Lipid assemblages having narrow molecular weight ranges are key constituents of cellular membranes. The molecular structures of lipids provide details of their biosynthetic pathways. Some lipid biosignatures are diagnostic for particular groups of microorganisms. The biosynthesis of organic matter and biochemical oxidation-reduction reactions can discriminate against the heavier isotopes of carbon and sulfur and thereby create molecular isotopic patterns that indicate not only their biological origins, but also key details about biosynthetic pathways. Sulfur isotopic patterns can indicate biological redox reactions. Because microorganisms can greatly enhance, at relatively low to moderate temperatures, reaction rates between oxidized and reduced sulfur compounds, they can create a range in the stable isotopic compositions of these compounds that is substantially larger than nonbiological reactions can achieve under similar conditions. The simultaneous presence of multiple biosignature objects, substances and patterns in a demonstrably habitable earlier environment constitutes the most compelling evidence of past life.



NASA Ames Research Center and the NASA Astrobiology program supported the preparation of this chapter. This work is dedicated to the memory of John M. Hayes—scholar, mentor and lifelong friend.


  1. Abed RM, Kohls K, Schoon R et al (2008) Lipid biomarkers, pigments and cyanobacterial diversity of microbial mats across intertidal flats of the arid coast of the Arabian Gulf (Abu Dhabi, UAE). FEMS Microbiol Ecol 65:449–462CrossRefGoogle Scholar
  2. Allen MA, Goh F, Burns BP et al (2009) Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in hypersaline lagoon of Shark Bay. Geobiology 7:82–89CrossRefGoogle Scholar
  3. Allen MA, Neilan BA, Burns BP et al (2010) Lipid biomarkers in Hamelin Pool microbial mats and stromatolites. Org Geochem 41:1207–1218CrossRefGoogle Scholar
  4. Allwood AC, Walter MR, Kamber BS et al (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 414:714–718ADSCrossRefGoogle Scholar
  5. Awramik SM (1984) Ancient stromatolites and microbial mats. In: Cohen Castenholz RW, Halvorson HO (eds) Microbial mats: stromatolites. Alan R. Liss, New York, pp 1–22Google Scholar
  6. Baker AJ, Fallick AE (1989) Evidence from Lewisian limestones for isotopically heavy carbon in two-thousand-million-year-old-sea water. Nature 337:352–354ADSCrossRefGoogle Scholar
  7. Bishop AN, Love GD, Mcaulay AD et al (1998) Release of kerogen-bound hopanoids by hydropyrolysis. Org Geochem 29:989–1001CrossRefGoogle Scholar
  8. Blair N, Leu A, Munoz E et al (1985) Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl Environ Microbiol 50:996–1001Google Scholar
  9. Blumenberg M, Krüger M, Nauhaus K et al (2006) Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environ Microbiol 8:1220–1227CrossRefGoogle Scholar
  10. Blumenberg M, Arp G, Reitner J et al (2013) Bacteriohopanepolyols in a stratified cyanobacterial mat from Kiritimati (Chistmas Island, Kiribati). Org Geochem 55:55–62CrossRefGoogle Scholar
  11. Boon JJ, Hines H, Burlingame AL et al (1983) Organic geochemical studies of Solar Lake laminated cyanobacterial mats. Adv Org Geochem 1981:207–227Google Scholar
  12. Bosak T, Knoll AH, Petroff AP (2013) The meaning of stromatolites. Annu Rev Earth Planet Sci 41:21–44ADSCrossRefGoogle Scholar
  13. Boudou JP, Trichet J, Robinson N et al (1986) Lipid composition of a recent Polynesian microbial mat sequence. Org Geochem 10:705–709CrossRefGoogle Scholar
  14. Brassell SC, Wardroper AMK, Thomson ID et al (1981) Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments. Nature 290:693–696ADSCrossRefGoogle Scholar
  15. Bravo JM, Perzl M, Härtner T et al (2001) Novel methylated triterpenoids of the gammacerane series from the nitrogen-fixing bacterium Bradyrhizobium japonicum USDA 110. Eur J Biochem 268:1323–1331CrossRefGoogle Scholar
  16. Brocks JJ, Schaeffer P (2008) Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation. Geochim Cosmochim Acta 72:1396–1414ADSCrossRefGoogle Scholar
  17. Brocks JJ, Love GD, Snape CE et al (2003) Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens via hydropyrolysis. Geochim Cosmochim Acta 67:1521–1530ADSCrossRefGoogle Scholar
  18. Brocks JJ, Love GD, Summons RE et al (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437:866–870ADSCrossRefGoogle Scholar
  19. Bühring SI, Smittenberg RH, Sachse D et al (2009) A hypersaline microbial mat from the Pacific Atoll Kiritimati: insights into composition and carbon fixation using biomarker analyses and a 13C-labeling approach. Geobiology 7:308–323CrossRefGoogle Scholar
  20. Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453ADSCrossRefGoogle Scholar
  21. Canfield DE (2001) Biogeochemistry of Sulfur Isotopes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Mineralogical Society of America, Washington, DC, pp 607–636Google Scholar
  22. Chaussidon M, Lorand J-P (1990) Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (north-eastern Pyrenees, France): an ion microprobe study. Geochim Cosmochim Acta 54:2835–2846ADSCrossRefGoogle Scholar
  23. Cleland CE, Chyba CF (2007) Does ‘Life’ have a definition? In: Sullivan WT, Baross JA (eds) Astrobiology and life. Cambridge University Press, Cambridge, pp 119–131Google Scholar
  24. Close HG, Bovee R, Pearson A (2011) Inverse carbon isotope patterns of lipids and kerogen record heterogeneous primary biomass. Geobiology 9:250–265CrossRefGoogle Scholar
  25. Cook HW, McMaster CR (2002) Fatty acid desaturation and chain elongation in eukaryotes. New Compr Biochem 36:181–204CrossRefGoogle Scholar
  26. Cronan JE, Thomas J (2009) Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 459:395–433CrossRefGoogle Scholar
  27. Deamer D (1986) Role of amphiphilic compounds in the evolution of membrane structure on the early Earth. Orig Life Evol Biosph 17:3–25CrossRefGoogle Scholar
  28. Deamer D (1997) The first living system: a bioenergetics perspective. Microbiol Mol Biol Rev 61:239–261Google Scholar
  29. DeNiro MJ, Epstein S (1977) Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197:261–263ADSCrossRefGoogle Scholar
  30. Des Marais DJ (1995) The biogeochemistry of hypersaline microbial mats. In: Jones G (ed) Advances in microbial ecology. Springer, New York, pp 251–274CrossRefGoogle Scholar
  31. Des Marais DJ (1997) Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon. Org Geochem 27:185–193CrossRefGoogle Scholar
  32. Des Marais DJ (2001) Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. In: Valley JW, Cole DR (eds) Stable isotope geochemistry (Reviews in mineralogy and geochemistry), vol 43. Mineralogy Society of America, Washington, pp 555–578Google Scholar
  33. Des Marais DJ (2010) Marine hypersaline Microcoleus-dominated cyanobacterial mats in the Saltern at Guerrero Negro, Baja California Sur, Mexico. In: Seckbach J (ed) Microbial mats, Cellular Origins, Life in Extreme habitats and astrobiology (COLE) series. Springer, Berlin, pp 401–420Google Scholar
  34. Des Marais DJ (2013) Planetary climate and the search for life. In: Mackwell SJ, Simon-Miller A, Harder JW et al (eds) Comparative climatology of terrestrial planets. The University of Arizona Press, Tucson, pp 583–601Google Scholar
  35. Des Marais DJ, Cohen Y, Nguyen H et al (1989) Carbon isotopic trends in the hypersaline ponds and microbial mats at Guerrero Negro, Baja California Sur, Mexico: implications for Precambrian stromatolites. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, pp 191–205Google Scholar
  36. Desmond E, Gribaldo S (2009) Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol Evol 1:364–381CrossRefGoogle Scholar
  37. Dhingra A, Portis AR, Daniell H (2004) Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. Proc Natl Acad Sci USA 101:6315–6320ADSCrossRefGoogle Scholar
  38. Dodd MS, Papineau D, Grenne T et al (2017) Envidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543:60–64ADSCrossRefGoogle Scholar
  39. Eickhoff M, Birgel D, Talbot HM (2014) Oxidation of Fe(II) leads to increased C-2 methylation of pentacyclic Rhodopseudomonas palustris strain TIE-1. Geobiology 11:268–278CrossRefGoogle Scholar
  40. Eigenbrode JL (2008) Fossil lipids for life-detection: a case study from the early Earth record. Space Sci Rev 135:161–185ADSCrossRefGoogle Scholar
  41. Eigenbrode JL, Freeman KH (2006) Late Archean rise of aerobic microbial ecosystems. Proc Natl Acad Sci USA 103:15759–15764ADSCrossRefGoogle Scholar
  42. Eigenbrode JL, Freeman KH, Summons RE (2008) Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence of Neoarchean aerobiosis. Earth Planet Sci Lett 273:323–331ADSCrossRefGoogle Scholar
  43. Eisenreich W, Bacher A, Arigoni D et al (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426CrossRefGoogle Scholar
  44. Ernst R, Ejsing CS, Antonny B (2016) Homeoviscous adaptation and the regulation of membrane lipids. J Mol Biol 428:4776–4791CrossRefGoogle Scholar
  45. Farrimond P, Head IM, Innes HE (2000) Evironmental influence on the biohopanoids composition of recent sediments. Geochim Cosmochim Acta 64:2985–2992ADSCrossRefGoogle Scholar
  46. Farrimond P, Love GD, Bishop AN et al (2003) Evidence for the rapid incorporation of hopanoids into kerogen. Geochim Cosmochim Acta 67:1383–1394ADSCrossRefGoogle Scholar
  47. Fedo CM, Whitehouse MJ (2002) Origin and significance of Archaean quartzose rocks at Akilia, Greenland. Science 298:917aCrossRefGoogle Scholar
  48. Fischer WW, Summons RE, Pearson A (2005) Targeted genomic detection of biosynthetic pathways: anaerobic production of hopanoid biomarkers by a common sedimentary microbe. Geobiology 3:33–40CrossRefGoogle Scholar
  49. Flannery DT, Allwood AC, Van Kranendonk MJ (2016) Lacustrine facies dependence of highly 13C-depleted organic matter during the global age of methanotrophy. Precambrian Res 285:216–241ADSCrossRefGoogle Scholar
  50. Franks J, Stolz JF (2009) Flat laminated microbial mat communities. Earth Sci Rev 96:163–172ADSCrossRefGoogle Scholar
  51. Freissinet C, Glavin DP, Mahaffy PR et al (2015) Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. J Geophys Res 120:495–514CrossRefGoogle Scholar
  52. French KL, Hallmann C, Hope JM et al (2015) Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc Natl Acad Sci USA 112:5915–5920ADSCrossRefGoogle Scholar
  53. Friend CRL, Nutman AP, Bennett VC (2002) Origin and significance of Archaean quartzose rocks at Akilia, Greenland. Science 298:917aCrossRefGoogle Scholar
  54. Galea AM, Brown AJ (2009) The special relationship between sterols and oxygen: were sterols an adaptation to aerobic life? Free Radic Biol Med 47:880–889CrossRefGoogle Scholar
  55. Garcia-Pichel F, Prufert-Bebout L, Muyzer G (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol 62:3284–3291Google Scholar
  56. Georgiou CD, Deamer DW (2014) Lipids as universal biomarkers of extraterrestrial life. Astrobiology 14:541–549ADSCrossRefGoogle Scholar
  57. Gerdes G, Krumbein WE, Hotkamp E (1985) Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems: the Gavish Sabkha. Springer, Berlin, pp 238–266CrossRefGoogle Scholar
  58. Golubic S, Abed RM (2010) Entophysalis mats as environmental regulators. In: Seckbach J, Oren A (eds) Microbial mats, modern and ancient microorganisms in stratified systems. Springer, Dordrecht, pp 237–251Google Scholar
  59. Grimalt JO, DeWit R, Teixior P et al (1992) Lipid biogeochemistry of Phormidium and Microcoleus mats. Org Geochem 19:509–530CrossRefGoogle Scholar
  60. Hand KP, Murray AE, Garvin J et al (2017) Science goals, objectives and investigations of the 2016 Europa Lander Science Definition Team report. Lunar and Planetary Science XLVIII: 2492Google Scholar
  61. Härtner T, Straub KL, Kannenberg E (2005) Occurrence of hopanoid lipids in anaerobic Geobacter species. FEMS Microbiol Lett 243:59–64CrossRefGoogle Scholar
  62. Harvey HR, Fallon RD, Patton JS (1986) The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments. Geochim Cosmochim Acta 50:795–804ADSCrossRefGoogle Scholar
  63. Hayes JM (1993) Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Mar Geol 113:111–125ADSCrossRefGoogle Scholar
  64. Hayes JM (1994) Global methanotrophy at the Archean-Proterozoic transition. In: Bengtson S (ed) Early life on Earth. Nobel symposium, vol 84. Columbia University Press, New York, pp 220–236Google Scholar
  65. Hayes JM (2001) Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Rev Mineral Geochem 43:225–277CrossRefGoogle Scholar
  66. Hayes JM (2004) Isotopic order, biogeochemical processes, and earth history. Geochim Cosmochim Acta 68:1691–1700ADSCrossRefGoogle Scholar
  67. Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere. Princeton University Press, Princeton, pp 93–134Google Scholar
  68. Hayes JM, Strauss H, Kaufman AJ (1999) The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem Geol 161:103–125ADSCrossRefGoogle Scholar
  69. Hinrichs KU, Summons RE, Orphan V et al (2000) Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org Geochem 31:1685–1701CrossRefGoogle Scholar
  70. Horita J (2005) Some perspectives on isotopic biosignatures for early life. Chem Geol 218:171–186ADSCrossRefGoogle Scholar
  71. Horita J, Polyakov VB (2015) Carbon-bearing iron phases and the carbon isotopic composition of the deep Earth. Proc Natl Acad Sci USA 112:31–36ADSCrossRefGoogle Scholar
  72. House C, Schopf JW, Stetter KO (2003) Carbon isotopic fractionation by Archeans and other thermophilic prokaryotes. Org Geochem 34:345–356CrossRefGoogle Scholar
  73. Jahnert RJ, Collins LB (2011) Significance of subtidal microbial deposits in Shark Bay, Australia. Mar Geol 286:106–111ADSCrossRefGoogle Scholar
  74. Jahnke LL, Klein HP (1979) Oxygen as a factor in eukaryote evolution: some effects of low levels of oxygen on Saccharomyces cerevisiae. Orig Life 9:329–334ADSCrossRefGoogle Scholar
  75. Jahnke LL, Klein HP (1983) Oxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae. J Bacteriol 155:488–492Google Scholar
  76. Jahnke LL, Embaye T, Hope J et al (2004) Lipid biomarker and carbon isotopic signatures for stromatolite-forming, microbial mat communities and Phormidium cultures from Yellowstone National Park. Geobiology 2:31–47CrossRefGoogle Scholar
  77. Jahnke LL, Orphan VJ, Embaye T et al (2008) Lipid biomarker and phylogenetic analyses to reveal archaeal biodiversity and distribution in hypersaline microbial mat and underlying sediment. Geobiology 6:394–410CrossRefGoogle Scholar
  78. Jahnke LL, Lee C, Parenteau MN et al (2014a) Transformations and fates of lipid biomarkers in microbial mat ecosystems. Goldschmidt Abstracts 2014:1112Google Scholar
  79. Jahnke LL, Turk-Kubo KA, Parenteau MN et al (2014b) Molecular and lipid biomarker analysis of a gypsum-hosted endoevaporitic microbial community. Geobiology 12:62–82CrossRefGoogle Scholar
  80. Javor B (1989) Hypersaline environments: microbiology and biogeochemistry. Springer, BerlinCrossRefGoogle Scholar
  81. Johnson CM, Beard BL, Roden EE (2008a) The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu Rev Earth Planet Sci 36:457–493ADSCrossRefGoogle Scholar
  82. Johnson CM, Beard BL, Klein C et al (2008b) Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim Cosmochim Acta 72:151–169ADSCrossRefGoogle Scholar
  83. Jørgensen BB, Des Marais DJ (1986) Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. FEMS Microbiol Ecol 38:179–186CrossRefGoogle Scholar
  84. Kaplan IR, Rittenberg SC (1964) Carbon isotope fractionation during metabolism of lactate by Desulfovibrio desulfuricans. J Gen Microbiol 34:213–217CrossRefGoogle Scholar
  85. Karhu JA, Holland HD (1996) Carbon isotopes and the rise of atmospheric oxygen. Geology 24:867–870ADSCrossRefGoogle Scholar
  86. Klappenbach JA, Pierson BK (2004) Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium ‘Candidatus Chlorothrix halophila’ gen. nov., sp. Nov., recovered from hypersaline microbial mats. Arch Microbiol 181:17–25CrossRefGoogle Scholar
  87. Knani MH, Corpe WA, Rohmer M (1994) Bacterial hopanoids from pink-pigmented facultative methylotrophs (PPFMs) and from green plant surfaces. Microbiology 140:2755–2759CrossRefGoogle Scholar
  88. Koga Y (2012) Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea 2012:1–6CrossRefGoogle Scholar
  89. Lange BM, Rujan T, Martin W et al (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97:13172–13177ADSCrossRefGoogle Scholar
  90. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50ADSCrossRefGoogle Scholar
  91. Logan GA, Hayes JM, Hieshima GB et al (1995) Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376:53–56ADSCrossRefGoogle Scholar
  92. Logan GA, Summons RE, Hayes JM (1997) An isotopic biogeochemical study of Neoproterozoic and Early Cambrian sediments from the Centralian Superbasin, Australia. Geochim Cosmochim Acta 61:5391–5409ADSCrossRefGoogle Scholar
  93. López-Lara IM, Geiger O (2017) Bacterial lipid diversity. Biochim Biophys Acta 1862:1287–1299CrossRefGoogle Scholar
  94. Love GD, Snape CE, Carr AD et al (1995) Release of covalently bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis. Org Geochem 23:981–986CrossRefGoogle Scholar
  95. Marshall CP, Love GD, Snape CE et al (2007) Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia. Precambrian Res 155:1–23ADSCrossRefGoogle Scholar
  96. McKay DS, Gibson EK Jr, Thomas-Keprta KL et al (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930ADSCrossRefGoogle Scholar
  97. Mojzsis SJ, Harrison TM, Friend CRL et al (2002) Origin and significance of Archaean quartzose rocks at Akilia, Greenland. Science 298:917aCrossRefGoogle Scholar
  98. Monson KD, Hayes JM (1980) Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Escherichia coli. J Biol Chem 255:11435–11441Google Scholar
  99. Morowitz H (1992) Beginnings of cellular life. Yale University Press, New Haven, CTGoogle Scholar
  100. Murata N, Wada H, Gombos Z (1992) Modes of fatty-acid desaturation in cyanobacteria. Plant Cell Physiol 33:933–941Google Scholar
  101. Mustard JF, Adler M, Allwood A et al (2013) Report of the Mars 2020 Science Definition Team, 154 p, posted July 2013, by the Mars Exploration Program Analysis Group (MEPAG) at
  102. National Research Council (2007) The limits of organic life in planetary systems. The National Academies Press, Washington, DC. Scholar
  103. Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111:6423–6451CrossRefGoogle Scholar
  104. Nübel U, Garcia-Pichel F, Clavero E (2000) Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ Microbiol 2:217–226CrossRefGoogle Scholar
  105. Oger PM (2015) Homeoviscous adaptation of membranes in archaea. High Pressure Biosci 72:383–403CrossRefGoogle Scholar
  106. Oger PM, Cario A (2013) Adaptation of the membrane in Archaea. Biophys Chem 183:42–56CrossRefGoogle Scholar
  107. Oren A, Kühl M, Karsten U (1995) An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophic photopigments, and light penetration. Mar Ecol Prog Ser 128:151–159ADSCrossRefGoogle Scholar
  108. Orphan VJ, Jahnke LL, Embaye T et al (2008) Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California. Geobiology 6:376–393CrossRefGoogle Scholar
  109. Ourisson G, Albrecht P (1992) Hopanoids. 1. Geohopanoids: the most abundant natural products on Earth? Acc Chem Res 25:398–402CrossRefGoogle Scholar
  110. Ourisson G, Rohmer M (1982) Prokaryotic polyterpenes: phylogenetic precursors of sterols. Curr Top Membr Transport 17:153–182CrossRefGoogle Scholar
  111. Ourisson G, Rohmer M (1992) Hopanoids. 2. Biohopanoids: a novel class of bacteria lipids. Acc Chem Res 25:403–408CrossRefGoogle Scholar
  112. Ourisson G, Rohmer M, Poralla K (1987) Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu Rev Microbiol 41:301–333CrossRefGoogle Scholar
  113. Pagés A, Grice K, Ertefai T et al (2014a) Organic geochemical studies of modern microbial mats from Shark Bay: Part I: influence of depth and salinity on lipid biomarkers and their isotopic signatures. Geobiology 12:469–487CrossRefGoogle Scholar
  114. Pagés A, Grice K, Vacher M et al (2014b) Characterizing microbial communities and processes in a modern stromatolite (Shark Bay) using lipid biomarkers and two-dimensional distributions of porewater solutes. Environ Microbiol 16:2458–2474CrossRefGoogle Scholar
  115. Palmisano AC, Cronin SE, D’Amelio ED et al (1989) Distribution and survival of lipophilic pigments in a laminated microbial mat community near Guerrero Negro, Mexico. In: Cohen Y, Rosenberg E (eds) Microbial mats, physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC, pp 138–152Google Scholar
  116. Pawlowska MM, Butterfield NJ, Brocks JJ (2013) Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41:103–106ADSCrossRefGoogle Scholar
  117. Pearson A (2014) Lipidomics for geochemistry. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 2, 2nd edn. Elsevier, Oxford, pp 291–336CrossRefGoogle Scholar
  118. Pearson A, Budin M, Brocks J (2003) Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 100:15352–15357ADSCrossRefGoogle Scholar
  119. Pearson VK, Sephton MA, Franchi IA et al (2006) Carbon and nitrogen in carbonaceous chondrites: elemental abundances and stable isotopic compositions. Meteorit Planet Sci 41:1899–1918ADSCrossRefGoogle Scholar
  120. Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide. Cambridge University Press, CambirdgeGoogle Scholar
  121. Pierson BK, Bauld J, Castenholz RW (1992) Modern mat-building microbial communities: a key to the interpretation of proterozoic stromatolitic communities. In: Schopf JW, Klein C (eds) The proterozoic biosphere. Cambridge University Press, Cambridge, pp 245–260CrossRefGoogle Scholar
  122. Pierson BK, Valdez D, Larsen M et al (1994) Chloroflexus-like organisms from marine and hypersaline environments: distribution and diversity. Photosynth Res 41:35–52CrossRefGoogle Scholar
  123. Poger D, Mark AE (2013) The relative effect of sterols and hopanoids on lipid bilayers: when comparable is not identical. J Phys Chem B 117:16129–16140CrossRefGoogle Scholar
  124. Postgate JR (1984) The sulphate-reducing bacteria, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  125. Preuss A, Schauder R, Fuchs G et al (1989) Carbon isotope fractionation by autotrophic bacteria with three different CO2 fixation pathways. Z Naturforsch 44c:397–402CrossRefGoogle Scholar
  126. Raven JA (2013) Rubisco: still the most abundant protein of Earth? New Phytol 198:1–3ADSCrossRefGoogle Scholar
  127. Rashby SE, Sessions AL, Summons RE, Newman DK (2007) Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc Natl Acad Sci U S A 104:15099–15104ADSCrossRefGoogle Scholar
  128. Reilly P (2016) Biosynthesis of fatty acids. American Oil Chemists Society.
  129. Renoux M, Rohmer M (1985) Prokaryotic triterpenoids. New bacteriohopanetetrol cyclitol ethers from the methylotrophic bacterium Methylobacterium organophilum. Eur J Biochem 151:405–410CrossRefGoogle Scholar
  130. Ricci JN, Michel AJ, Newman DK (2015) Phylogenetic analysis of HpnP reveals the origin of 2-methylhopanoid production in Alphaproteobacteria. Geobiology 13:267–277CrossRefGoogle Scholar
  131. Rohmer M (1993) The biosynthesis of triterpenoids of the hopane series in the Eubacteria: a mine of new enzymatic reactions. Pure Appl Chem 65:1293–1298CrossRefGoogle Scholar
  132. Rohmer M (2008) From molecular fossils of bacterial hopanoids to the formation of isoprene units: discovery and elucidation of the methylerythritol phosphate pathway. Lipids 43:1095–1107CrossRefGoogle Scholar
  133. Rohmer M, Anding C, Ourisson G (1980) Non-specific biosynthesis of hopane triterpenes by a cell-free system from Acetobacter pasteurianum. Eur J Biochem 112:541–547CrossRefGoogle Scholar
  134. Rohmer M, Bouvier-Nave P, Ourisson G (1984) Distribution of hopanoid triterpenes in prokaryotes. J Gen Microbiol 130(5):1137–1150Google Scholar
  135. Rontani J-F, Volkman JK (2005) Lipid characterization of coastal hypersaline cyanobacterial mats from the Camargue (France). Org Geochem 36:251–272CrossRefGoogle Scholar
  136. Rosing MT, Frei R (2004) U-rich Archaean sea-floor sediments from Greenland-indications of >3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 217:237–244ADSCrossRefGoogle Scholar
  137. Sáenz JP, Sezgin E, Schwille P et al (2012) Functional convergence of hopanoids and sterols in membrane ordering. Proc Natl Acad Sci USA 109:14236–14240ADSCrossRefGoogle Scholar
  138. Sáenz JP, Grosser D, Bradley AS et al (2015) Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc Natl Acad Sci USA 112:11971–11976ADSCrossRefGoogle Scholar
  139. Schidlowski M (1988) A 3,800 million year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318ADSCrossRefGoogle Scholar
  140. Schidlowski M (1993) The initiation of biological processes on Earth; Summary of the empirical evidence. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum, New York, pp 639–655CrossRefGoogle Scholar
  141. Schopf JW, Klein C (1992) The proterozoic biosphere: a multidisciplinary study. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  142. Schouten S, Özdirekcan S, van der Meer MT et al (2008) Evidence for substantial intramolecular heterogeneity in the stable carbon isotopic composition of phytol in photoautotrophic organisms. Org Geochem 39:135–146CrossRefGoogle Scholar
  143. Schouten S, Hopmans EC, Sinninghe Damsté JS (2013) The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org Geochem 54:19–61CrossRefGoogle Scholar
  144. Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410:77–81ADSCrossRefGoogle Scholar
  145. Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 7:522–525ADSCrossRefGoogle Scholar
  146. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731ADSCrossRefGoogle Scholar
  147. Sinninghe Damsté JS, de Leeuw JW (1990) Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research. Org Geochem 16:1077–1101CrossRefGoogle Scholar
  148. Sinninghe Damsté JS, Rijpstra WIC, Schouten S et al (2004) The occurrence of hopanoids in planctomycetes: implications for the sedimentary biomarker record. Org Geochem 35:561–566CrossRefGoogle Scholar
  149. Sinninghe Damsté JS, Rijpstra WI, Hopmans EC et al (2011) 13,16-dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria Subdivisions 1 and 3. Appl Environ Microbiol 77:4147–4154CrossRefGoogle Scholar
  150. Sojo V, Pomiankowski A, Lane N (2014) A bioenergetics basis for membrane divergence in Archaea and Bacteria. PLoS Biol 12:e1001926CrossRefGoogle Scholar
  151. Stal LJ (2012) Cyanobacterial mats and stromatolites. In: Whitton BA (ed) Ecology of cyanobacteria II. Springer, New York, pp 65–125CrossRefGoogle Scholar
  152. Strauss H, Moore TB (1992) Abundances and isotopic compositions of carbon and sulphur species in Whole Rock and Kerogen. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 709–797CrossRefGoogle Scholar
  153. Summons RE, Jahnke LL, Hope JM et al (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557ADSCrossRefGoogle Scholar
  154. Summons RE, Bradley AS, Jahnke LL et al (2006) Steroids, triterpenoids and molecular oxygen. Philos Trans R Soc B 361:951–968CrossRefGoogle Scholar
  155. Summons RE, Amend JP, Bish D et al (2011) Preservation of martian organic and environmental records. Astrobiology 11:157–181ADSCrossRefGoogle Scholar
  156. Talbot HM, Rohmer M, Farrimond P (2007) Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionization liquid chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom 21:880–892ADSCrossRefGoogle Scholar
  157. Talbot HM, Summons RE, Jahnke LL et al (2008) Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings. Org Geochem 39:232–263CrossRefGoogle Scholar
  158. Tang T, Mohr W, Sattin SR et al (2017) Geochemically distinct carbon isotope distributions in Allochromatium vinosum DSM 180T grown photoautotrophically and photheterotrophically. Geobiology 15:324–339CrossRefGoogle Scholar
  159. Ten Haven TL, Rohmer M, Rullkötter J et al (1989) Tetrahymanol, the most likely precursor of gammacerane occurs ubiquitously in marine sediments. Geochim Cosmochim Acta 53:3073–3079ADSCrossRefGoogle Scholar
  160. Tritz J-P, Herrmann D, Bisseret P et al (1999) Abiotic and biological hopanoid transformation: towards the formation of molecular fossils of the hopane series. Org Geochem 30:499–514CrossRefGoogle Scholar
  161. Veizer J, Ala D, Amzy K et al (1999) 87Sr/86Sr, δ 13C and δ 18O evolution of Phanerozoic seawater. Chem Geol 161:59–88ADSCrossRefGoogle Scholar
  162. Vilcheze C, Llopiz P, Neunlist S et al (1994) Prokaryotic triterpenoids: new hopanoids from the nitrogen-fixing bacteria Azotobacter vinelandii, Beijerinckia indica and Beijerinckia mobilis. Microbiology 140:2749–2753CrossRefGoogle Scholar
  163. Vincent WF, Quesada A (2012) Cyanobacteria in high latitude lakes, rivers and seas. In: Whitton BA (ed) Ecology of cyanobacteria II. Springer, New York, pp 371–399CrossRefGoogle Scholar
  164. Von Neumann J (1966) Theory of self-reproducing automata. In Burks AW (ed) University of Illinois Press, UrbanaGoogle Scholar
  165. Vranová E, Coman D, Gruissem W (2012) Structure and dynamics of the isoprenoid pathway network. Mol Plant 5:318–333CrossRefGoogle Scholar
  166. Waldbauer JR, Newman DK, Summons RE (2011) Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proc Natl Acad Sci USA 108:13409–13414ADSCrossRefGoogle Scholar
  167. Walter MR (1983) Archean stromatolites – evidence of the earth’s earliest benthos. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 187–213Google Scholar
  168. Walter MR (1994) Stromatolites: the main geological source of information on the evolution of the early benthos. In: Bentson S (ed) Early life on earth. Nobel symposium, vol 84. Columbia University Press, New York, pp 270–286Google Scholar
  169. Ward DM, Castenholz RW, Miller SR (2012) Cyanobacteria in geothermal habitats. In: Whitton BA (ed) Ecology of cynobacteria II. Springer, Rotterdam, pp 39–69CrossRefGoogle Scholar
  170. Wei JH, Yin X, Welander PV (2016) Sterol synthesis in diverse bacteria. Front Microbiol 7:990Google Scholar
  171. Welander PV, Coleman ML, Sessions AL et al (2010) Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proc Natl Acad Sci USA 107:8537–8542ADSCrossRefGoogle Scholar
  172. Welander PV, Doughty DM, Wu C-H et al (2012) Identification and characterization of Rhodopseudomonas palustris TIE-1 hopanoid biosynthesis mutants. Geobiology 10:163–177CrossRefGoogle Scholar
  173. White GF, Russell NJ, Tidswell EC (1996) Bacterial scission of ether bonds. Microbiol Rev 60:216–232Google Scholar
  174. Wiederhold JG (2015) Metal stable isotope signatures as tracers in environmental geochemistry. Environ Sci Technol 49:2606–2624ADSCrossRefGoogle Scholar
  175. Wieland A, Pape T, Möbius J et al (2008) Carbon pools and isotopic trends in a hypersaline cyanobacterial mat. Geobiology 6:171–186CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.NASA-Ames Research CenterMountain ViewUSA

Personalised recommendations