Advertisement

Organic Matter in Interplanetary Dusts and Meteorites

  • Eric QuiricoEmail author
  • Lydie Bonal
Chapter
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)

Abstract

Asteroids and comets have continuously delivered organics to Earth and telluric planets since their formation ~4.55 Ga ago. Characterizing these organics and investigating their origin constitutes a major goal of astrobiology and planetary sciences. This chapter reviews past and current knowledge on the nature of the exogenous organics accreted by the Earth, their composition and structure and different issues regarding their origin and subsequent evolution through the effects of secondary processes in/on their original asteroidal or cometary parent bodies. Tertiary processes such as weathering and, in the case of dust, the heating and oxidation effects during atmospheric entry, are also discussed. The last section focuses on the nature and preservation of organics at the surface of Mars, in the context of the ExoMars and Mars2020 missions.

References

  1. Aléon J, Engrand C, Robert F et al (2001) Clues to the origin of interplanetary dust particles from the isotopic study of their hydrogen-bearing phases. Geochim Cosmochim Acta 65:4399–4412ADSCrossRefGoogle Scholar
  2. Aléon J, Robert F, Chaussidon M et al (2003) Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles. Geochim Cosmochim Acta 67:3773–3783ADSCrossRefGoogle Scholar
  3. Alexander CMO’D, Russell SS, Arden JW et al (1998) The origin of chondritic macromolecular organic matter: a carbon and nitrogen isotope study. Meteorit Planet Sci 33:603–622ADSCrossRefGoogle Scholar
  4. Alexander CMO’D, Fogel M, Yabuta H et al (2007) The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim Cosmochim Acta 71:4380–4403ADSCrossRefGoogle Scholar
  5. Alexander CMO’D, Newsome SN, Fogel ML et al (2010) Deuterium enrichments in chondritic macromolecular material – implications for the origin and evolution of organics, water and asteroids. Geochim Cosmochim Acta 74:4417–4437ADSCrossRefGoogle Scholar
  6. Alexander CMO’D, Cody GD, Kebukawa Y et al (2014) Elemental, isotopic and structural changes in Tagish Lake insoluble organic matter produced by parent body processes. Meteorit Planet Sci 49:503–525ADSCrossRefGoogle Scholar
  7. Alexander CMO’D, Cody GD, De Gregorio BT et al (2017) The nature, origin and modification of insoluble organic matter in chondrites, the possibly interstellar source of Earth’s C and N. Chem Erde 77:227–256CrossRefGoogle Scholar
  8. Altwegg K, Balsiger H, Bar Nun A et al (2016) Prebiotic chemicals amino acid and phosphorus in the coma of comet 67P/Churyumov-Gerasimenko. Sci Adv 2:e1600285ADSCrossRefGoogle Scholar
  9. Anders E, Ganapathy R, Krähenbühl U et al (1973) Meteoritic material on the Moon. The Moon 8:3–24ADSCrossRefGoogle Scholar
  10. Ash RD, Pillinger CT (1995) Carbon, nitrogen and hydrogen in Saharan chondrites: the importance of weathering. Meteoritics 30:85–92ADSCrossRefGoogle Scholar
  11. Ashley JW, Golombek MP, Christensen PR et al (2011) Evidence for mechanical and chemical alteration of iron-nickel meteorites on Mars: process insights for Meridiani Planum. J Geophys Res 116:E00F20CrossRefGoogle Scholar
  12. Bandurski EL, Nagy B (1976) The polymer-like organic material in the Orgueil meteorite. Geochim Cosmochim Acta 40:1397–1406ADSCrossRefGoogle Scholar
  13. Beck P, Quirico E, Montes-Hernandez G (2010) Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids. Geochim Cosmochim Acta 74:4881–4892ADSCrossRefGoogle Scholar
  14. Benner SA, Devine KG, Matveeva LN et al (2000) The missing organic molecules on Mars. Proc Natl Acad Sci USA 97:2425–2430ADSCrossRefGoogle Scholar
  15. Bernstein MP, Moore MH, Elsila JE et al (2003) Side group addition to the polycyclic aromatic hydrocarbon coronene by proton irradiation in cosmic ice analogs. Astrophys J 582:L25–L29ADSCrossRefGoogle Scholar
  16. Berthelot P (1868) Cosmologie – Sur la matière charbonneuse des météorites. C R Hebd Seances Acad Sci 67:849Google Scholar
  17. Biemann K, Bada JL (2011) Comment on “Reanalysis of the Viking results suggests perchrlorate and organics at midlatitudes on Mars” by Rafael Navarro-Gonzáles et al. J Geophys Res 116:E12001ADSCrossRefGoogle Scholar
  18. Biemann K, Oro J, Toulmin P III et al (1977) The search for organic substances and inorganic volatile compounds in the surface of Mars. J Geophys Res 82:4641–4658ADSCrossRefGoogle Scholar
  19. Binet L, Gourier D, Derenne S et al (2002) Heterogeneous distribution of paramagnetic radicals in insoluble organic matter from the Orgueil and Murchison meteorites. Geochim Cosmochim Acta 66:4177–4186ADSCrossRefGoogle Scholar
  20. Binet L, Gourier D, Derenne S et al (2004) Occurence of abundant diradicaloid moieties in the insoluble organic matter from the Orgueil and Murchison meteorites: a fingerprint of its extraterrestrial origin? Geochim Cosmochim Acta 68:881–891ADSCrossRefGoogle Scholar
  21. Bland PA, Smith TB (2000) Meteorite accumulation on Mars. Icarus 144:21–26ADSCrossRefGoogle Scholar
  22. Bland PA, Smith TB, Jull AJT et al (1996) The flux of meteorites to the Earth over the last 50000 years. Mon Not R Astron Soc 283:551–565ADSCrossRefGoogle Scholar
  23. Bonal L, Quirico E, Bourot-Denise M (2006) Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochim Cosmochim Acta 70:1849–1863ADSCrossRefGoogle Scholar
  24. Bonal L, Bourot-Denise M, Quirico E et al (2007) Organic matter and metamorphic history in CO chondrites. Geochim Cosmochim Acta 71:1605–1623ADSCrossRefGoogle Scholar
  25. Bonal L, Alexander CMO’D, Huss GR et al (2013) Hydrogen isotopic composition of the water in CR chondrites. Geochim Cosmochim Acta 106:111–113ADSCrossRefGoogle Scholar
  26. Bonal L, Quirico E, Flandinet L et al (2016) Thermal history of type 3 chondrites from the Antarctic meteorite collection determined by Raman spectroscopy of their polyaromatic carbonaceous matter. Geochim Cosmochim Acta 189:312–337ADSCrossRefGoogle Scholar
  27. Boslough MD (1988) Meteoritic enrichment of Martian regolith. Abstracts of the Lunar and Planetary Science Conference 19:120ADSGoogle Scholar
  28. Bradley JP (2014) Early Solar Nebula grains – interplanetary dust particles. In: Davis AM (ed) Meteorites and cosmochemical processes. Volume 1 of Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 287–308CrossRefGoogle Scholar
  29. Briani G, Gounelle M, Bourot-Denise M et al (2012) Xenoliths and microxenoliths in H chondrites: sampling the zodiacal cloud in the asteroid Main Belt. Meteorit Planet Sci 47:880–902ADSCrossRefGoogle Scholar
  30. Brinton KLF, Engrand C, Glavin DP et al (1998) A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites. Orig Life Evol Biosph 28:413–424ADSCrossRefGoogle Scholar
  31. Brunetto R, Pino T, Dartois E, Cao A-T, d'Hendecourt L, Strazzulla G, Bréchignac P (2009) Comparison of the Raman spectra of ion irradiated soot and collected extraterrestrial carbon. Icarus 200:323–337ADSCrossRefGoogle Scholar
  32. Burns RG, Fisher DS (1993) Rates of oxidative weathering on the surface of Mars. J Geophys Res 98(E2):3365–3372ADSCrossRefGoogle Scholar
  33. Burton AS, Stern JC, Elsila JE et al (2012) Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem Soc Rev 41:5459–5472CrossRefGoogle Scholar
  34. Busemann H, Young A, Alexander CMO’D et al (2006) Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312:727–730ADSCrossRefGoogle Scholar
  35. Busemann H, Alexander CMO’D, Nittler LR (2007) Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy. Meteorit Planet Sci 42:1387–1416ADSCrossRefGoogle Scholar
  36. Busemann H, Nguyen AN, Cody GD et al (2009) Ultra-primitive interplanetary dust particles from the comet 26P/Grigg-Skjellerup dust stream collection. Earth Planet Sci Lett 288:44–57ADSCrossRefGoogle Scholar
  37. Capaccioni F, Coradini A, Filacchione G et al (2015) The organic-rich surface of comet 67P/Churyumov-Gerasimenko as sees by VIRTIS/Rosetta. Science 347:aaa0628CrossRefGoogle Scholar
  38. Cleeves LI, Bergin EA, Alexander CMO’D et al (2014) The ancient heritage of water ice in the solar system. Science 345:1590–1593ADSCrossRefGoogle Scholar
  39. Cody GD, Alexander CMO’D (2005) NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups. Geochim Cosmochim Acta 69:1085–1097ADSCrossRefGoogle Scholar
  40. Cody GD, Alexander CMO’D, Tera F (2002) Solid state (1H and 13C) NMR spectroscopy of the insoluble organic residue in the Murchison meteorite: a self-consistent quantitative analysis. Geochim Cosmochim Acta 66:1851–1865ADSCrossRefGoogle Scholar
  41. Cody GD, Alexander CMO’D, Yabuta H et al (2008) Organic thermometry for chondritic parent bodies. Earth Planet Sci Lett 272:446–455ADSCrossRefGoogle Scholar
  42. Cody GD, Heying E, Alexander CMO’D et al (2011) Establishing a molecular relationship between chondritic and cometary organic solids. Proc Natl Acad Sci USA 108:19171–19176ADSCrossRefGoogle Scholar
  43. Cronin JR, Pizzarello S, Frye JS (1987) 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites. Geochim Cosmochim Acta 51:299–303ADSCrossRefGoogle Scholar
  44. Crovisier J, Leech K, Bockelée-Morvan D et al (1997) The spectrum of comet Hale-Bopp (C/199501) observed with the Infrared Space Observatory at 2.9 astronomical units from the Sun. Science 275:1904–1907ADSCrossRefGoogle Scholar
  45. Dartois E, Marco O, Munoz-Caro GM et al (2004) Diffuse interstellar medium organic polymers. Astron Astrophys 423:L33–L36ADSCrossRefGoogle Scholar
  46. Dartois E, Geballe TR, Pino T et al (2007) IRAS 08572+3915: constraining the aromatic versus aliphatic content of interstellar HACs. Astron Astrophys 46:635–640ADSCrossRefGoogle Scholar
  47. Dartois E, Engrand C, Brunetto R et al (2013) Ultracarbonaceous Antarctic micrometeorites, probing the solar System beyond the nitrogen snow-line. Icarus 224:243–252ADSCrossRefGoogle Scholar
  48. Davila AF, Fairen AG, Gago-Duport L et al (2008) Subsurface formation of oxidants on Mars and implications for the preservation of organic biosignatures. Earth Planet Sci Lett 272:456–463ADSCrossRefGoogle Scholar
  49. Davis PM (1993) Meteoroid impacts as seismic sources on Mars. Icarus 105:469–478ADSCrossRefGoogle Scholar
  50. Delpoux O, Gourier D, Vezin H et al (2011) Biradical character of D-rich carriers in the insoluble organic matter of carbonaceous chondrites: a relic of the protoplanetary disk chemistry. Geochim Cosmochim Acta 75:326–336ADSCrossRefGoogle Scholar
  51. DeMeo FE, Carry B (2013) The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus 226:723–741ADSCrossRefGoogle Scholar
  52. Dermott SF, Durda DD, Grogan K et al (2002) Asteroidal dust. In: Bottke WF Jr, Cellino A, Paolicchi P et al (eds) Asteroids III. University of Arizona Press, Tucson, pp 423–442Google Scholar
  53. Dobrica E, Engrand C, Duprat J et al (2009) Connection between micrometeorites and Wild 2 particles from Antarctic snow to cometary ices. Meteorit Planet Sci 44:1643–1661ADSCrossRefGoogle Scholar
  54. Dobrica E, Engrand C, Quirico E et al (2011) Raman characterization of carbonaceous matter in CONCORDIA Antarctic micrometeorites. Meteorit Planet Sci 46:1363–1375ADSCrossRefGoogle Scholar
  55. Dominguez G, McLeod AS, Gainsforth Z et al (2014) Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples. Nat Commun 5:5445CrossRefGoogle Scholar
  56. Duprat J, Engrand C, Maurette M et al (2007) Micrometeorites from Central Antarctic snow: the CONCORDIA collection. Adv Space Res 39:605–611ADSCrossRefGoogle Scholar
  57. Duprat J, Dobrica E, Engrand C et al (2010) Extreme deuterium excesses in ultracarbonaceous micrometeorites from central Antarctic snow. Science 328:742–745ADSCrossRefGoogle Scholar
  58. Ehrenfreund P, Robert F, d’Hendecourt L et al (1991) Comparison of interstellar and meteoritic organic-matter at 3.4 μm. Astron Astrophys 252:712–717ADSGoogle Scholar
  59. Elsila JE, Dworkin JP, Berstein MP et al (2007) Mechanisms of amino acid formation in interstellar ice analogs. Astrophys J 660:911–918ADSCrossRefGoogle Scholar
  60. Elsila JE, Glavin DP, Dworkin JP (2009) Cometary glycine detected in samples returned by Stardust. Meteorit Planet Sci 44:1323–1330ADSCrossRefGoogle Scholar
  61. Engrand C, Maurette M (1998) Carbonaceous micrometeorites from Antarctica. Meteorit Planet Sci 33:565–580ADSCrossRefGoogle Scholar
  62. Farley KA (1995) Cenozoic variations in the flux of interplanetary dust recorded by 3He in a deep-sea sediment. Nature 376:153–156ADSCrossRefGoogle Scholar
  63. Floss C, Stadermann FJ, Bradle JP et al (2006) Identification of isotopically primitive interplanetary dust particles: a NanoSIMS isotopic imaging study. Geochim Cosmochim Acta 70:2371–2399ADSCrossRefGoogle Scholar
  64. Flynn GJ (1996) The delivery of organic matter from asteroids and comets to the early surface of Mars. Earth Moon Planets 72:469–474ADSCrossRefGoogle Scholar
  65. Flynn GJ, McKay DS (1990) An assessment of the meteorite contribution to the Martian soil. J Geophys Res 95:14497–14509ADSCrossRefGoogle Scholar
  66. Flynn GJ, Keller LP, Feser M et al (2003) The origin of organic matter in the solar system: evidence from the interplanetary dust particles. Geochim Cosmochim Acta 67:4791–4806ADSCrossRefGoogle Scholar
  67. Freissinet C et al (2015) Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. J Geophys Res Planets 120:495–514ADSCrossRefGoogle Scholar
  68. Gabrielli P, Barbante C, Plane JMC et al (2004) Meteorite smoke fallout over the Halocene epoch revealed by iridium and plantinum in Greenland ice. Nature 432:1011–1014ADSCrossRefGoogle Scholar
  69. Gardinier A, Derenne S, Robert F et al (2000) Solid state CP/MAS C-13 NMR of the insoluble organic matter of the Orgueil and Murchison meteorites: quantitative study. Earth Planet Sci Lett 184:9–21ADSCrossRefGoogle Scholar
  70. Gattacceca J, Valenzuela M, Uehara M et al (2011) The densest meteorite collection area in hot deserts: the San Juan meteorite field (Atacama Desert, Chile). Meteorit Planet Sci 46:1276–1287ADSCrossRefGoogle Scholar
  71. Genge MJ, Engrand C, Gounelle M et al (2008) The classification of micrometeorites. Meteorit Planet Sci 43:497–515ADSCrossRefGoogle Scholar
  72. Glavin DP, Freissinet C, Miller KE et al (2013) Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J Geophys Res Planets 118:1955–1973ADSCrossRefGoogle Scholar
  73. Gounelle M, Zolensky ME, Liou J-C et al (2003) Mineralogy of carbonaceous chondritic microsclasts in Howardites: identification of C2 fossil micrometeorites. Geochim Cosmochim Acta 67:507–527ADSCrossRefGoogle Scholar
  74. Gounelle M, Spurny P, Bland PA (2006) The orbit and atmospheric trajectory of the Orgueil meteorite from historical records. Meteorit Planet Sci 41:135–150ADSCrossRefGoogle Scholar
  75. Gourier D, Robert F, Delpoux O et al (2008) Extreme deuterium enrichment of organic radicals in the Orgueil meteorite: revisiting the interstellar interpretation? Geochim Cosmochim Acta 72:1914–1923ADSCrossRefGoogle Scholar
  76. Grady MM (2000) Catalogue of meteorites. Cambridge University Press, CambridgeGoogle Scholar
  77. Grossman L, Larimer JW (1974) Early chemical of the solar system. Rev Geophys Space Phys 12:71–101ADSCrossRefGoogle Scholar
  78. Halliday I, Blackwell AT, Griffin AA (1984) The frequency of meteorite falls on the Earth. Science 223:1405–1407ADSCrossRefGoogle Scholar
  79. Halliday I, Blackwell AT, Griffin AA (1989) The flux of meteorites on the Earth’s surface. Meteoritics 24:173–178ADSCrossRefGoogle Scholar
  80. Harvey RP, Cassidy WA (1989) A statistical comparison of Antarctic finds and modern falls: mass frequency distributions and relative abundance by type. Meteoritics 24:9–14ADSCrossRefGoogle Scholar
  81. Hayes JM (1967) Organic consistuents of meteorites – a review. Geochim Cosmochim Acta 31:1395–1440ADSCrossRefGoogle Scholar
  82. Hayatsu R, Matsuoka S, Scott RG et al (1977) Origin of organic matter in earlt solar system. VII. The organic polymer in carbonaceous chondrites. Geochim Cosmochim Acta 41:1325–1339ADSCrossRefGoogle Scholar
  83. Hayatsu R, Winans RE, Scott RG et al (1980) Phenolic esters in the organic polymer of the Murchison meteorite. Science 207:1202–1204ADSCrossRefGoogle Scholar
  84. Hayatsu R, Anders E (1981) Organic compounds in meteorites and their origins. Top Curr Chem 99:3–37Google Scholar
  85. Hecht MH, Kounaves SP, Quinn RC et al (2009) Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander Site. Science 325:64–67ADSCrossRefGoogle Scholar
  86. Henning T, Semenov D (2013) Chemistry in protoplanetary disks. Chem Rev 113:9016–9042CrossRefGoogle Scholar
  87. Herd CDK, Blinova A, Simku DN et al (2011) Origin and evolution of prebiotic organic matter as inferred from the Tagish Lake meteorite. Science 332:1304–1307ADSCrossRefGoogle Scholar
  88. Hertkorn N, Harir M, Cawley KM et al (2015) Molecular characterization of dissolved organic matter from subtropical wetlands: a comparative study through the analysis of optical properties, NMR and FTICR/MS. Biogeosciences 13:2257–2277ADSCrossRefGoogle Scholar
  89. Horst SM, Yelle RV, Buch A et al (2012) Formation of amino acids and nucleotides bases in a Titan atmosphere simulation experiment. Astrobiology 12:809–817ADSCrossRefGoogle Scholar
  90. Humayun M, Nemchin A, Zanda B et al (2013) Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 503:513–516ADSCrossRefGoogle Scholar
  91. Hunten DM, Turco RP, Toon OB (1980) Smoke and dust particles of meteoric origin in the mesosphere and stratosphere. J Atmos Sci 37:1342–1357ADSCrossRefGoogle Scholar
  92. Huss GR, Rubin A, Grossman J (2006) Thermal metamorphism in chondrites. In: Lauretta DS, McSween HY Jr (eds) Meteorites and the early solar system II. University of Arizona Press, Tucson, pp 567–586Google Scholar
  93. Jull AJT (2006) Terrestrial ages of meteorites. In: Lauretta DS, McSween HY Jr (eds) Meteorites and the early solar system II. University of Arizona Press, Tucson, pp 889–905Google Scholar
  94. Kebukawa Y, Alexander CMO’D, Cody GD (2011) Compositional diversity in insoluble organic matter in type 1, 2 and 3 chondrites as detected by infrared spectroscopy. Geochim Cosmochim Acta 75:3530–3541ADSCrossRefGoogle Scholar
  95. Kebukawa Y, Kilcoyne ALD, Cody GD (2013) Exploring the potential formation of organic solids in chondrites and comets through polymerization of interstellar formaldehyde. Astrophys J 771:19ADSCrossRefGoogle Scholar
  96. Keller LP, Messenger S, Flynn GJ et al (2004) The nature of molecular cloud material in interplanetary dust. Geochim Cosmochim Acta 68:2577–2589ADSCrossRefGoogle Scholar
  97. Kerridge J, Chang S, Shipp R (1987) Isotopic characterization of kerogen-like material in the Murchison carbonaceous chondrite. Geochim Cosmochim Acta 51:2527–2540ADSCrossRefGoogle Scholar
  98. Kitajima F, Nakamura T, Takaoka N et al (2002) Evaluating the thermal metamorphism of CM chondrites by using the pyrolitic behavior of carbonaceous macromolecular matter. Geochim Cosmochim Acta 66:163–172ADSCrossRefGoogle Scholar
  99. Kminek G, Bada JL (2006) The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet Sci Lett 245:1–5ADSCrossRefGoogle Scholar
  100. Komiya M, Shimoyama A (1996) Organic compounds from insoluble organic matter isolated from the Murchison carbonaceous chondrite by heating experiments. Bull Chem Soc Jpn 69:53–58CrossRefGoogle Scholar
  101. Krot AN, Keil K, Scott ERD et al (2014) Classification of Meteorites and their genetic relationships. In: Davis AM (ed) Meteorites and cosmochemical processes. Volume 1 of Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 1–63Google Scholar
  102. Kvenvolden K, Lawless J, Pering K et al (1970) Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228:923–926ADSCrossRefGoogle Scholar
  103. Lanci L, Kent DV (2006) Meteoritic smoke fallout revealed by superparamagnetism in Greenland ice. Geophys Res Lett 33:L13308ADSCrossRefGoogle Scholar
  104. Laurent B, Roskosz M, Remusat L et al (2014) Isotopic and structural signature of experimentally irradiated organic matter. Geochim Cosmochim Acta 142:522–534ADSCrossRefGoogle Scholar
  105. Laurent B, Roskosz M, Remusat L et al (2015) The deuterium/hydrogen distribution in chondritic organic matter attests to early ionizing irradiation. Nat Commun 6:8567CrossRefGoogle Scholar
  106. Le Guillou C, Rouzaud J-N, Bonal L et al (2012) High resolution TEM of chondritic carbonaceous matter: metamorphic evolution and heterogeneity. Meteorit Planet Sci 47:345–362ADSCrossRefGoogle Scholar
  107. Le Guillou C, Bernard S, Brearley AJ et al (2014) Evolution of organic matter in Orgueil Murchison and Renazzo during parent body aqueous alteration: In situ investigations. Geochim Cosmochim Acta 131:368–392ADSCrossRefGoogle Scholar
  108. Love SG, Brownlee DD (1991) Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere. Icarus 89:26–43ADSCrossRefGoogle Scholar
  109. Love SG, Brownlee DE (1993) A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262:550–553ADSCrossRefGoogle Scholar
  110. Mahaffy PR, Webster CR, Cabane M et al (2012) The sample analysis at Mars investigation and instrument suite. Space Sci Rev 170:401–478ADSCrossRefGoogle Scholar
  111. Matrajt G, Pizzarello S, Taylor S et al (2004) Concentration and variability of the AIB amino acid in polar micrometeorites: implications for the exogenous delivery of amino acids to the primitive Earth. Meteorit Planet Sci 39:1849–1858ADSCrossRefGoogle Scholar
  112. Matrajt G, Munoz-Caro GM, Dartois E et al (2005) FTIR analysis of the organics in IDPs: comparison with the IR spectra of the diffuse interstellar medium. Astron Astrophys 433:979–995ADSCrossRefGoogle Scholar
  113. Maurice S, Wiens RC, Anderson R et al and the SuperCam team (2015) Science objectives of the SuperCam instrument for the Mars2020 rover. LPSC #2818Google Scholar
  114. Merouane S, Djouadi Z, Le Sergeant d’Hendecourt L (2014) Relations between aliphatics and silicate components in 12 stratospheric particles deduced from vibrational spectroscopy. Astrophys J 780:174–186ADSCrossRefGoogle Scholar
  115. Messenger S (2000) Identification of molecular-cloud material in interplanetary dut particles. Nature 404:968–971ADSCrossRefGoogle Scholar
  116. Messenger S (2002) Deuterium enrichments in interplanetary dust. Planet Space Sci 50:1221–1225ADSCrossRefGoogle Scholar
  117. Michel-Lévy MC, Lautie A (1981) Microanalysis by Raman spectroscopy of carbon in the Tieschitz chondrite. Nature 292:321–322ADSCrossRefGoogle Scholar
  118. Millan M, Szopa C, Buch A et al (2016) In situ analysis of martian regolith with the SAM experiment during the first mars year of the MSL mission: identification of organic molecules by gas chromatography from laboratory measurements. Planet Space Sci 129:88–102ADSCrossRefGoogle Scholar
  119. Ming DW, Lauer HV Jr, Archer PD Jr et al (2009) Combustion of organic molecules by the thermal decomposition of perchlorate salts: implications for organics at the Mars Phoenix scout landing site. LPSC#2241Google Scholar
  120. Moores JE, Schuerger AC (2012) UV degradation of accreted organics on Mars: IDP longevity, surface reservoir of organics, and relevance to the detection of methane in the atmosphere. J Geophys Res 117:E08008ADSCrossRefGoogle Scholar
  121. Munoz Caro GM, Matrajt G, Dartois E et al (2006) Nature and evolution of the dominant carbonaceous matter in interplanetary dust particles: effects of irradiation and identification with a type of amorphous carbon. Astron Astrophys 459:147–159ADSCrossRefGoogle Scholar
  122. Naraoka H, Mita H, Komiya M et al (2004) A chemical sequence of macromolecular organic matter in the CM chondrites. Meteorit Planet Sci 39:401–406ADSCrossRefGoogle Scholar
  123. Navarro-González R, McKay CP (2011) Reply to comment by Biemann and Bada on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars”. J Geophys Res 116:E12002ADSCrossRefGoogle Scholar
  124. Navarro-González R, Navarro KF, de la Rosa J et al (2006) The limitations on organic detection in Mars-like soils by thermal volatilization–gas chromatography-MS and their implications for the Viking results. Proc Natl Acad Sci USA 103:16089–16094ADSCrossRefGoogle Scholar
  125. Navarro-González R, Vargas E, de la Rosa J (2010) Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J Geophys Res 115:E12010ADSCrossRefGoogle Scholar
  126. Nesvorný D, Jenniskens P, Levison HF et al (2010) Cometary origin of the Zodiacal Cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys J 713:816–836ADSCrossRefGoogle Scholar
  127. Oba Y, Naraoka H (2009) Elemental and isotopic behavior of macromolecular organic matter from CM chondrites during hydrous pyrolysis. Meteorit Planet Sci 44:943–954ADSCrossRefGoogle Scholar
  128. Okumura F, Mumura K (2011) Gradual and stepwise pyrolyses of insoluble organic matter from the Murchison meteorite revealing chemical structure and isotopic distribution. Geochim Cosmochim Acta 75:7063–7080ADSCrossRefGoogle Scholar
  129. Orthous-Daunay FR, Quirico E, Lemelle L et al (2010) Speciation of sulfur in the insoluble organic matter from carbonaceous chondrites by XANES spectroscopy. Earth Planet Sci Lett 300:321–328ADSCrossRefGoogle Scholar
  130. Orthous-Daunay FR, Quirico E, Beck P et al (2013) Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites. Icarus 223:534–543ADSCrossRefGoogle Scholar
  131. Parise B, Ceccarelli C, Tielens AGGM et al (2006) Testing grain surface chemistry: a survey of deuterated formaldehyde and methanol in low-mass class 0 protostars. Astron Astrophys 453:949–958ADSCrossRefGoogle Scholar
  132. Peltzer ET, Bada J (1978) Alpha-hydroxycarboxylic acids in Murchinson meteorite. Nature 272:443ADSCrossRefGoogle Scholar
  133. Pendleton YJ, Allamandola LJ (2002) The organic refractory material in the diffuse interstellar medium: mid-infrared spectroscopic constraints. Astrophys J Suppl 138:75–98ADSCrossRefGoogle Scholar
  134. Piani L, Robert F, Remusat L (2015) Micron-scale D/H heterogeneity in chondrite matrices: a signature of the pristine solar system water? Earth Planet Sci Lett 415:154–164ADSCrossRefGoogle Scholar
  135. Poch O, Noblet A, Stalport F et al (2013) Chemical evolution of organic molecules under Mars-like UV radiation conditions simulated in the laboratory with the “Mars organic molecule irradiation and evolution” (MOMIE) setup. Planet Space Sci 85:188–197ADSCrossRefGoogle Scholar
  136. Poch O, Kaci S, Stalport F et al (2014) Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated Mars surface UV radiation conditions. Icarus 242:50–63ADSCrossRefGoogle Scholar
  137. Poch O, Jaber M, Stalport F et al (2015) Effects of nontronite smectite clay on chemical evolution of several organic molecules under simulated Martian surface ultraviolet radiation conditions. Astrobiology 15:1–17ADSCrossRefGoogle Scholar
  138. Quirico E, Raynal PI, Bourot-Denise M (2003) Metamorphic grade of organic matter in six unequilibrated ordinary chondrites. Meteorit Planet Sci 38:795–811ADSCrossRefGoogle Scholar
  139. Quirico E, Borg J, Raynal P-I et al (2005) A micro-Raman survey of 10 IDPs and 6 carbonaceous chondrites 2005. Planet Space Sci 53:1443–1448ADSCrossRefGoogle Scholar
  140. Quirico E, Montagnac G, Rouzaud J-N et al (2009) Precursor and metamorphic conditions effects on Raman spectra of poorly-ordered carbonaceous matter in chondrites and coals. Earth Planet Sci Lett 287:185–193ADSCrossRefGoogle Scholar
  141. Quirico E, Bourot-Denise M, Robin C et al (2011) A reappraisal of the thermal history of EH3 and EL3 enstatite chondrites. Geochim Cosmochim Acta 75:3088–3102ADSCrossRefGoogle Scholar
  142. Quirico E, Orthous-Daunay FR, Beck P et al (2014) Origin of insoluble organic matter in type 1 and 2 chondrites: new clues, new questions. Geochim Cosmochim Acta 136:80–99ADSCrossRefGoogle Scholar
  143. Remusat L, Derenne S, Robert F et al (2005a) New pyrolytic and spectroscopic data on Orgueil and Murchison insoluble organic: a different origin than soluble? Geochim Cosmochim Acta 69:3919–3932ADSCrossRefGoogle Scholar
  144. Remusat L, Derenne S, Robert F (2005b) New insight on aliphatic linkages in the macromolecular organic fraction of Orgueil and Murchison meteorites through ruthenium tetroxide oxidation. Geochim Cosmochim Acta 69:4377–4386ADSCrossRefGoogle Scholar
  145. Remusat L, Palhol F, Robert F et al (2006) Enrichment of deuterium in insoluble organic matter from primitive meteorites: a solar system origin? Earth Planet Sci Lett 243:15–25ADSCrossRefGoogle Scholar
  146. Remusat L, Robert F, Meibom A et al (2009) Protoplanetary chemistry recorded by D-rich organic radicals in carbonaceous chondrites. Astrophys J 698:2087–2092ADSCrossRefGoogle Scholar
  147. Remusat L, Piani L, Bernard S (2016) Thermal recalcitrance of the organic D-rich component of ordinary chondrites. Earth Planet Sci Lett 435:36–44ADSCrossRefGoogle Scholar
  148. Rietmeijer FJM (1998) Interplanetary dust particles. In: Papike JJ (ed) Planetary materials. Revs mineral, vol 36. Mineralogical Society of America, Washington, DC, pp 1–95Google Scholar
  149. Robert F, Epstein S (1982) The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous meteorites. Geochim Cosmochim Acta 46:81–95ADSCrossRefGoogle Scholar
  150. Rubin AE (1997) The Hadley Rille enstatite chondrite and its agglutinate-like rim: impact melting during accretion to the Moon. Meteorit Planet Sci 32:135–141ADSCrossRefGoogle Scholar
  151. Rudraswami NG, Shyam Prasad M, Jones RH et al (2016) In situ oxygen isotope compositions in olivines of different types of cosmic spherules: an assessment of relationships to chondritic particles. Geochim Cosmochim Acta 194:1–14ADSCrossRefGoogle Scholar
  152. Schimmelmann A, Sessions A, Mastalerz M (2006) Hydrogen isotopic (D/H) composition of organic diagenesis and thermal maturation. Annu Rev Earth Planet Sci 34:501–533ADSCrossRefGoogle Scholar
  153. Schmitt-Koplin P, Gabelica Z, Gougeon RD et al (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci USA 107:2763–2768ADSCrossRefGoogle Scholar
  154. Schmitz B, Tassinari M, Peucker-Ehrenbrink B (2001) A rain of ordinary chondrite meteorites in the early Ordovician. Earth Planet Sci Lett 194:1–15ADSCrossRefGoogle Scholar
  155. Schröder C, Rodionov DS, McCoy TJ et al (2008) Meteorites on Mars observed with the Mars Exploration Rovers. J Geophys Res 113:E06S22CrossRefGoogle Scholar
  156. Sephton MA (2002) Organic compounds in carbonaceous meteorites. Nat Prod Rep 19:292–311CrossRefGoogle Scholar
  157. Sephton MA, Gilmour I (2001) Pyrolysis-gas chromatography-isotope ratio mass spectrometry of macromolecular material in meteorites. Planet Space Sci 49:465–471ADSCrossRefGoogle Scholar
  158. Sephton MA, Pillinger CT, Gilmour I (2000) Aromatic moieties in meteoritic macromolecular materials: analyses by hydrous pyrolysis and δ13C of individual compounds. Geochim Cosmochim Acta 64:321–328ADSCrossRefGoogle Scholar
  159. Sephton MA, Verchovsky AB, Bland PA et al (2003) Investigating the variations in carbon and nitrogen isotopes in carbonaceous chondrites. Geochim Cosmochim Acta 67:2093–2108ADSCrossRefGoogle Scholar
  160. Sephton MA, Love GD, Watson JS et al (2004) Hydropyrolysis of insoluble carbonaceous matter in the Murchison meteorite: new insights into its macromolecular structure. Geochim Cosmochim Acta 68:1385–1393ADSCrossRefGoogle Scholar
  161. Starkey NA, Franchi IA, Alexander CMO’D (2013) A Raman spectroscopic study of organic matter in interplanetary dust particles and meteorites using multiple wavelength laser excitation. Meteorit Planet Sci 48:1800–1822ADSCrossRefGoogle Scholar
  162. Steininger H, Goesmann F, Goetz W (2012) Influence of magnesium perchlorate on the pyrolysis of organic compounds in Mars analogue soils. Planet Space Sci 71:9–17ADSCrossRefGoogle Scholar
  163. Stoker CR, Bullock MA (1997) Organic degradation under simulated martian conditions. J Geophys Res 102:10881–10888ADSCrossRefGoogle Scholar
  164. Suavet C, Cordier C, Folco L et al (2011) Non carbonaceaous chondrite-related large cosmic spherules from the Transantarctic Mountains. Geochim Cosmochim Acta 75:6200–6210ADSCrossRefGoogle Scholar
  165. Taylor S, Lever JH, Harvey RP (1998) Accretion rate of cosmic spherules measure at the South Pole. Nature 393:899–903ADSCrossRefGoogle Scholar
  166. Thomas KL, Blanford GE, Keller LP et al (1993) Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochim Cosmochim Acta 57:1551–1566ADSCrossRefGoogle Scholar
  167. Tonui E, Zolensky M, Hiroi T et al (2014) Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I: CI and CM chondrite. Geochim Cosmochim Acta 126:284–306ADSCrossRefGoogle Scholar
  168. Vernazza P, Delbo M, King PL et al (2012) High surface porosity as the origin of emissivity features in asteroid spectra. Icarus 221:1162–1171ADSCrossRefGoogle Scholar
  169. Vis RD, Mrowiec A, Kooyman PJ et al (2002) Microscopic search for the carrier phase Q of the trapped planetary noble gases in Allende, Leoville and Vigarano. Meteorit Planet Sci 37:1391–1399ADSCrossRefGoogle Scholar
  170. Wang Y, Huang Y, Alexander CMO’D et al (2005) Molecular and compound-specific hydrogen isotope analyses of insoluble organic matter from 80 different carbonaceous chondrites groups. Geochim Cosmochim Acta 69:3711–3721ADSCrossRefGoogle Scholar
  171. Wopenka B (1988) Raman observations on individual interplanetary dust particules. Earth Planet Sci Lett 88:221–231ADSCrossRefGoogle Scholar
  172. Yabuta H, Naraoka H, Sakanishi K et al (2005) Solid-state 13C NMR characterization of insoluble organic matter from Antarctic CM2 chondrites: evaluation of the meteoritic alteration level. Meteorit Planet Sci 40:779–787ADSCrossRefGoogle Scholar
  173. Yabuta H, Alexander CMO’D, Fogel ML et al (2010) A molecular and isotopic study of the macromolecular organic matter of the ungrouped C2 WIS 91600 and its relationship to Tagish Lake and PCA 91008. Meteorit Planet Sci 45:1446–1460ADSCrossRefGoogle Scholar
  174. Yuen G, Blair N, DesMarias DJ et al (1984) Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Nature 307:252ADSCrossRefGoogle Scholar
  175. Zolensky ME, Bland PA, Brown P et al (2006a) Flux of extraterrestrial materials. In: Lauretta DS, McSween HY Jr (eds) Meteorites and the early solar system II. University of Arizona Press, Tucson, pp 869–888Google Scholar
  176. Zolensky ME, Zega TJ, Yano H et al (2006b) Mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science 314:1735–1739ADSCrossRefGoogle Scholar
  177. Zuckerman B, Ball JA, Gottlieb CA (1971) Microwave detection of interstellar formic acid. Astrophys J 163:L41–L45ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université Grenoble AlpesGrenobleFrance
  2. 2.Institut de Planétologie et d’Astrophysique de GrenobleGrenobleFrance

Personalised recommendations