Advertisement

Searching for Signs of Life on Other Planets: Mars a Case Study

  • Jorge L. VagoEmail author
  • Frances Westall
  • Barbara Cavalazzi
  • The ExoMars Science Working Team
Chapter
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)

Abstract

Demonstrating the existence of simple life forms (past or present) on a cosmic body other than Earth is exceedingly challenging: (1) A naturally sceptic scientific community expects the evidence to be convincing—for example, several independent lines of analyses performed on a feature where the results can only be explained by a biological process. (2) Most bodies are difficult to explore in situ, just about the only way to achieve the above goal, and even then, typically, several missions are required to understand where to go and what to study. (3) Planets and moons that can only be observed remotely (e.g. exoplanets) or from orbit can at best provide some indirect hints of life potential. The actual verification of life would require studying samples containing biosignatures. With the exception of some active moons where jets and plumes may provide the means for satellites to analyse surface sourced material, most other cases require landing, exploring, collecting samples, and analysing them in situ—or bringing them back to Earth.

In this chapter we look at Mars as an example case and propose a scoring system for assigning a confidence value to a group of observations aiming to establish whether a location hosted (or still harbors) microbial life.

Life-seeking missions to other planets should target as many biosignatures as possible. Their discoveries cannot be conclusive unless they include powerful analytical chemistry instruments able to study biosignatures of biomolecules and their degradation products.

Notes

Acknowledgements

The Authors would like to thank the ExoMars project team and scientists (past and present), as well as our colleagues from industry. We would also like to recognize the help and support of ESA, Roscosmos, the European states and agencies participating in the ExoMars program, and NASA. Portions of this Chapter have appeared in Vago et al. (2017) and are included courtesy of Astrobiology.

References

  1. Allwood AC, Walter MR, Kamber BS et al (2006) Stromatolite reef from the early Archaean era of Australia. Nature 441:714–718ADSCrossRefGoogle Scholar
  2. Allwood AC, Grotzinger JP, Knoll AH et al (2009) Controls on development and diversity of early Archean stromatolites. Proc Natl Acad Sci USA 106:9548–9555ADSCrossRefGoogle Scholar
  3. Allwood AC, Burch IW, Rouchy JM et al (2013) Morphological biosignatures in gypsum: diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites. Astrobiology 13:870–886ADSCrossRefGoogle Scholar
  4. Archer PD, Ming DW, Sutter B et al (2016) Oxychlorine species on Mars: implications from Gale Crater samples. In: 47th Lunar and Planetary Science Conference, Abstract 2947Google Scholar
  5. Bibring J-P, Langevin Y, Mustard JF (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312:400–404ADSGoogle Scholar
  6. Biemann K, Bada JL (2011) Comment on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars” by Rafael Navarro-González et al. J Geophys Res 116(E12):E12001ADSCrossRefGoogle Scholar
  7. Biemann K, Oro J, Toulmin P et al (1977) The search for organic substances and inorganic volatile compounds in the surface of Mars. J Geophys Res 82:4641–4658ADSCrossRefGoogle Scholar
  8. Bishop JL, Loizeau D, McKeown NK et al (2013) What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars. Planet Space Sci 86:130–149ADSCrossRefGoogle Scholar
  9. Bishop JL, Fairén AG, Michalski JR et al (2018) Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars. Nat Astron 2:206–213ADSCrossRefGoogle Scholar
  10. Brocks JJ, Love GD, Summons RE (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic Sea. Nature 437:866–870ADSCrossRefGoogle Scholar
  11. Cady SL, Farmer JD, Grotzinger JP et al (2003) Morphological biosignatures and the search for life on Mars. Astrobiology 3:351–368ADSCrossRefGoogle Scholar
  12. Dartnell LR, Desorgher L, Ward JM, Coates AJ (2007) Modelling the surface and subsurface martian radiation environment: implications for astrobiology. Geophys Res Lett 34(2):L02207.  https://doi.org/10.1029/2006GL027494ADSCrossRefGoogle Scholar
  13. Dartnell LR, Page K, Jorge-Villar SE, Wright G, Munshi T, Scowen IJ, Ward JM, Edwards HGM (2012) Destruction of raman biosignatures by ionising radiation and the implications for life detection on mars. Anal Bioanal Chem 403(1):131–144.  https://doi.org/10.1007/s00216-012-5829-6CrossRefGoogle Scholar
  14. Davies NS, Liu AG, Gibling MR et al (2016) Resolving MISS conceptions and misconceptions: a geological approach to sedimentary surface textures generated by microbial and abiotic processes. Earth Sci Rev 154:210–246CrossRefGoogle Scholar
  15. Dupraz C, Reid RP, Braissant O et al (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–152ADSCrossRefGoogle Scholar
  16. Edgar LA, Gupta S, Rubin DM et al (2017) Shaler: in situ analysis of a fluvial sedimentary deposit on Mars. Sedimentology 65:96–122CrossRefGoogle Scholar
  17. Ehlmann BL, Mustard JF, Murchie SL et al (2011) Subsurface water and clay mineral formation during the early history of Mars. Nature 479:53–60ADSCrossRefGoogle Scholar
  18. Ehrenfreund P, Cami J (2010) Cosmic carbon chemistry: from the interstellar medium to the early earth. Cold Spring Harb Perspect Biol 2(12):a002097–a002097.  https://doi.org/10.1101/cshperspect.a002097CrossRefGoogle Scholar
  19. Ehrenfreund P, Charnley SB (2000) Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early earth. Annu Rev Astron Astrophys 38(1):427–483.  https://doi.org/10.1146/annurev.astro.38.1.427ADSCrossRefGoogle Scholar
  20. Eigenbrode JL (2008) Fossil lipids for life-detection: a case study from the early earth record. Space Sci Rev 135:161–185ADSCrossRefGoogle Scholar
  21. Foucher F, Westall F, Brandstatter F et al (2010) Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth’s atmosphere: the STONE 6 experiment. Icarus 207:616–630ADSCrossRefGoogle Scholar
  22. Freissinet C, Glavin DP, Mahaffy PR (2015) Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. J Geophys Res 120:495–514CrossRefGoogle Scholar
  23. Glavin DP, Freissinet C, Miller KE et al (2013) Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J Geophys Res 118:1955–1973CrossRefGoogle Scholar
  24. Goetz W, Brinckerhoff WB, Arevalo R et al (2016) MOMA: the challenge to search for organics and biosignatures on Mars. Int J Astrobiol 15:239–250CrossRefGoogle Scholar
  25. Grotzinger JP, Sumner DY, Kah LC, Stack K, Gupta S, Edgar L, Rubin D, Lewis K, Schieber J, Mangold N, Milliken R, Conrad PG, DesMarais D, Farmer J, Siebach K, Calef F, Hurowitz J, McLennan SM, Ming D, Vaniman D, Crisp J, Vasavada A, Edgett KS, Malin M, Blake D, Gellert R, Mahaffy P, Wiens RC, Maurice S, Grant JA, Wilson S, Anderson RC, Beegle LW, Arvidson R, Hallet B, Sletten RS, Rice M, Bell J, Griffes J, Ehlmann B, Anderson RB, Bristow TF, Dietrich WE, Dromart G, Eigenbrode J, Fraeman A, Hardgrove C, Herkenhoff K, Jandura L, Kocurek G, Lee S, Leshin LA, Leveille R, Limonadi D, Maki J, McCloskey S, Meyer M, Minitti M, Newsom H, Oehler D, Okon A, Palucis M, Parker T, Rowland S, Schmidt M, Squyres S, Steele A, Stolper E, Summons R, Treiman A, Williams R, Yingst A, Team MS, Kemppinen O, Bridges N, Johnson JR, Cremers D, Godber A, Wadhwa M, Wellington D, McEwan I, Newman C, Richardson M, Charpentier A, Peret L, King P, Blank J, Weigle G, Li S, Robertson K, Sun V, Baker M, Edwards C, Farley K, Miller H, Newcombe M, Pilorget C, Brunet C, Hipkin V, Leveille R, Marchand G, Sanchez PS, Favot L, Cody G, Fluckiger L, Lees D, Nefian A, Martin M, Gailhanou M, Westall F, Israel G, Agard C, Baroukh J, Donny C, Gaboriaud A, Guillemot P, Lafaille V, Lorigny E, Paillet A, Perez R, Saccoccio M, Yana C, Armiens-Aparicio C, Rodriguez JC, Blazquez IC, Gomez FG, Gomez-Elvira J, Hettrich S, Malvitte AL, Jimenez MM, Martinez-Frias J, Martin-Soler J, Martin-Torres FJ, Jurado AM, Mora-Sotomayor L, Caro GM, Lopez SN, Peinado-Gonzalez V, Pla-Garcia J, Manfredi JAR, Romeral-Planello JJ, Fuentes SAS, Martinez ES, Redondo JT, Urqui-O’Callaghan R, Mier M-PZ, Chipera S, Lacour J-L, Mauchien P, Sirven J-B, Manning H, Fairen A, Hayes A, Joseph J, Sullivan R, Thomas P, Dupont A, Lundberg A, Melikechi N, Mezzacappa A, DeMarines J, Grinspoon D, Reitz G, Prats B, Atlaskin E, Genzer M, Harri A-M, Haukka H, Kahanpaa H, Kauhanen J, Paton M, Polkko J, Schmidt W, Siili T, Fabre C, Wray J, Wilhelm MB, Poitrasson F, Patel K, Gorevan S, Indyk S, Paulsen G, Bish D, Gondet B, Langevin Y, Geffroy C, Baratoux D, Berger G, Cros A, D’Uston C, Forni O, Gasnault O, Lasue J, Lee Q-M, Meslin P-Y, Pallier E, Parot Y, Pinet P, Schroder S, Toplis M, Lewin E, Brunner W, Heydari E, Achilles C, Sutter B, Cabane M, Coscia D, Szopa C, Robert F, Sautter V, Le Mouelic S, Nachon M, Buch A, Stalport F, Coll P, Francois P, Raulin F, Teinturier S, Cameron J, Clegg S, Cousin A, DeLapp D, Dingler R, Jackson RS, Johnstone S, Lanza N, Little C, Nelson T, Williams RB, Jones A, Kirkland L, Baker B, Cantor B, Caplinger M, Davis S, Duston B, Fay D, Harker D, Herrera P, Jensen E, Kennedy MR, Krezoski G, Krysak D, Lipkaman L, McCartney E, McNair S, Nixon B, Posiolova L, Ravine M, Salamon A, Saper L, Stoiber K, Supulver K, Van Beek J, Van Beek T, Zimdar R, French KL, Iagnemma K, Miller K, Goesmann F, Goetz W, Hviid S, Johnson M, Lefavor M, Lyness E, Breves E, Dyar MD, Fassett C, Edwards L, Haberle R, Hoehler T, Hollingsworth J, Kahre M, Keely L, McKay C, Bleacher L, Brinckerhoff W, Choi D, Dworkin JP, Floyd M, Freissinet C, Garvin J, Glavin D, Harpold D, Martin DK, McAdam A, Pavlov A, Raaen E, Smith MD, Stern J, Tan F, Trainer M, Posner A, Voytek M, Aubrey A, Behar A, Blaney D, Brinza D, Christensen L, DeFlores L, Feldman J, Feldman S, Flesch G, Jun I, Keymeulen D, Mischna M, Morookian JM, Pavri B, Schoppers M, Sengstacken A, Simmonds JJ, Spanovich N, de la Torre Juarez M, Webster CR, Yen A, Archer PD, Cucinotta F, Jones JH, Morris RV, Niles P, Rampe E, Nolan T, Fisk M, Radziemski L, Barraclough B, Bender S, Berman D, Dobrea EN, Tokar R, Cleghorn T, Huntress W, Manhes G, Hudgins J, Olson T, Stewart N, Sarrazin P, Vicenzi E, Bullock M, Ehresmann B, Hamilton V, Hassler D, Peterson J, Rafkin S, Zeitlin C, Fedosov F, Golovin D, Karpushkina N, Kozyrev A, Litvak M, Malakhov A, Mitrofanov I, Mokrousov M, Nikiforov S, Prokhorov V, Sanin A, Tretyakov V, Varenikov A, Vostrukhin A, Kuzmin R, Clark B, Wolff M, Botta O, Drake D, Bean K, Lemmon M, Schwenzer SP, Lee EM, Sucharski R, de Pablo Hernandez MA, Avalos JJB, Ramos M, Kim M-H, Malespin C, Plante I, Muller J-P, Navarro-Gonzalez R, Ewing R, Boynton W, Downs R, Fitzgibbon M, Harshman K, Morrison S, Kortmann O, Williams A, Lugmair G, Wilson MA, Jakosky B, Balic-Zunic T, Frydenvang J, Jensen JK, Kinch K, Koefoed A, Madsen MB, Stipp SLS, Boyd N, Campbell JL, Perrett G, Pradler I, VanBommel S, Jacob S, Owen T, Savijarvi H, Boehm E, Bottcher S, Burmeister S, Guo J, Kohler J, Garcia CM, Mueller-Mellin R, Wimmer-Schweingruber R, Bridges JC, McConnochie T, Benna M, Franz H, Bower H, Brunner A, Blau H, Boucher T, Carmosino M, Atreya S, Elliott H, Halleaux D, Renno N, Wong M, Pepin R, Elliott B, Spray J, Thompson L, Gordon S, Ollila A, Williams J, Vasconcelos P, Bentz J, Nealson K, Popa R, Moersch J, Tate C, Day M, Francis R, McCullough E, Cloutis E, ten Kate IL, Scholes D, Slavney S, Stein T, Ward J, Berger J, Moores JE (2014) A habitable fluvio-lacustrine environment at yellowknife bay, gale crater, mars. Science 343(6169):1242777–1242777.  https://doi.org/10.1126/science.1242777CrossRefGoogle Scholar
  26. Hecht MH, Kounaves SP, Quinn RC et al (2009) Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 325:64–67ADSCrossRefGoogle Scholar
  27. Imbus SW, McKirdy DM (1993) Organic geochemistry of Precambrian sedimentary rocks. In: Engel MH, Macko SA (eds) Organic Geochemistry. Plenum, New York, pp 657–684CrossRefGoogle Scholar
  28. Johannesson KH, Telfeyan K, Chevis DA et al (2014) Rare earth elements in stromatolites—1. evidence that modern terrestrial stromatolites fractionate rare earth elements during incorporation from ambient waters. In: Dilek Y, Furnes H (eds) Evolution of Archean Crust and Early Life, Modern Approaches in Solid Earth Sciences, vol 7. Springer Science+Business Media, Dordrecht, pp 385–410CrossRefGoogle Scholar
  29. Klein HP (1998) The search for life on Mars: what we learned from Viking. J Geophys Res 103(E12):28463–28466ADSCrossRefGoogle Scholar
  30. Klein HP (1999) Did Viking discover life on Mars? Orig Life Evol Biosph 29:625–631ADSCrossRefGoogle Scholar
  31. Klein HP, Lederberg J, Rich A et al (1976) The Viking mission search for life on Mars. Nature 262:24–27ADSCrossRefGoogle Scholar
  32. Kminek G, Bada J (2006) The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet Sci Lett 245(1–2):1–5.  https://doi.org/10.1016/j.epsl.2006.03.008ADSCrossRefGoogle Scholar
  33. Kounaves SP, Hecht MH, Kapit J et al (2010) Wet chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: data analysis and results. J Geophys Res 115(E1):E00E10Google Scholar
  34. Kounaves SP, Chaniotakis NA, Chevrier VF et al (2014) Identification of the perchlorate parent salts at the phoenix Mars landing site and possible implications. Icarus 232:226–231ADSCrossRefGoogle Scholar
  35. Lapotre MGA, Ehlmann BL, Minson SE et al (2017) Compositional variations in sands of the Bagnold Dunes, Gale Crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the curiosity rover. J Geophys Res Planets 122:2489–2509ADSCrossRefGoogle Scholar
  36. Lasne J, Noblet A, Szopa C et al (2016) Oxidants at the surface of Mars: a review in light of recent exploration results. Astrobiology 16:977–996ADSCrossRefGoogle Scholar
  37. Lefèvre CT, Bazylinski DA (2013) Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev 77:497–526CrossRefGoogle Scholar
  38. Levin GV, Straat PA (2016) The case for extant life on Mars and its possible detection by the Viking labeled release experiment. Astrobiology 16:798–810ADSCrossRefGoogle Scholar
  39. Loizeau D, Mangold N, Poulet F et al (2010) Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM. Icarus 205:396–418ADSCrossRefGoogle Scholar
  40. Loizeau D, Werner SC, Mangold N et al (2012) Chronology of deposition and alteration in the Mawrth Vallis region, Mars. Planet Space Sci 72:31–43ADSCrossRefGoogle Scholar
  41. Malin MC, Edgett KS (2000) Sedimentary rocks of early Mars. Science 290:1927–1937ADSCrossRefGoogle Scholar
  42. McKay CP (2010) An origin of life on Mars. Cold Spring Harb Perspect Biol 2:a003509–a003509CrossRefGoogle Scholar
  43. Michalski JR, Niles PB, Cuadros J et al (2013) Multiple working hypotheses for the formation of compositional stratigraphy on Mars: insights from the Mawrth Vallis region. Icarus 226:816–840ADSCrossRefGoogle Scholar
  44. Navarro-González R, McKay CP (2011) Reply to comment by Biemann and Bada on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars”. J Geophys Res 116(E12):E12002ADSCrossRefGoogle Scholar
  45. Navarro-González R, Vargas E, de la Rosa J et al (2010) Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J Geophys Res 115(E12):E12010Google Scholar
  46. Navarro-González R, Vargas E, de la Rosa J et al (2011) Correction to “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars”. J Geophys Res 116(E8):E08011Google Scholar
  47. Noffke N, Awramik SM (2013) Stromatolites and MISS—differences between relatives. GSA Today 23:4–9CrossRefGoogle Scholar
  48. Ohtomo Y, Kakegawa T, Ishida A et al (2014) Evidence for biogenic graphite in early archaean isua metasedimentary rocks. Nat Geosci 7:25–28ADSCrossRefGoogle Scholar
  49. Parnell J, Cullen D, Sims MR et al (2007) Searching for life on Mars: selection of molecular targets for ESA’s aurora ExoMars mission. Astrobiology 7:578–604ADSCrossRefGoogle Scholar
  50. Pavlov AA, Vasilyev G, Ostryakov VM, Pavlov AK, Mahaffy P (2012) Degradation of the organic molecules in the shallow subsurface of mars due to irradiation by cosmic rays. Geophys Res Lett 39(13).  https://doi.org/10.1029/2012GL052166CrossRefGoogle Scholar
  51. Poulet F, Bibring J-P, Mustard JF et al (2005) Phyllosilicates on Mars and implications for early martian climate. Nature 438:623–627ADSCrossRefGoogle Scholar
  52. Quinn RC, Martucci HFH, Miller SR et al (2013) Perchlorate radiolysis on Mars and the origin of Martian soil reactivity. Astrobiology 13:515–520ADSCrossRefGoogle Scholar
  53. Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318ADSCrossRefGoogle Scholar
  54. Sephton MA, JMT L, Watson JS et al (2014) Perchlorate-induced combustion of organic matter with variable molecular weights: implications for Mars missions. Geophys Res Lett 41:7453–7460ADSCrossRefGoogle Scholar
  55. Solomon SC (2005) New perspectives on ancient Mars. Science 307:1214–1220ADSCrossRefGoogle Scholar
  56. Squyres SW, Arvidson RE, Bell JF (2004a) The Spirit Rover’s Athena science investigation at Gusev Crater, Mars. Science 305:794–799ADSCrossRefGoogle Scholar
  57. Squyres SW, Arvidson RE, Bell JF (2004b) The opportunity Rover’s Athena science investigation at Meridiani Planum, Mars. Science 306:1698–1703ADSCrossRefGoogle Scholar
  58. Steininger H, Goesmann F, Goetz W (2012) Influence of magnesium perchlorate on the pyrolysis of organic compounds in Mars analogue soils. Planet Space Sci 71:9–17ADSCrossRefGoogle Scholar
  59. Strasdeit H (2010) Chemical evolution and early Earth’s and Mars’ environmental conditions. Palaeodiversity 3:107–116Google Scholar
  60. Summons RE, Albrecht P, McDonald G et al (2008) Molecular biosignatures. Space Sci Rev 135:133–159ADSCrossRefGoogle Scholar
  61. Summons RE, Amend JP, Bish D et al (2011) Preservation of Martian organic and environmental records: final report of the Mars biosignature working group. Astrobiology 11:157–181ADSCrossRefGoogle Scholar
  62. Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer, HeidelbergCrossRefGoogle Scholar
  63. Vago JL, Westall F, Pasteur Instrument Teams et al (2017) Habitability on early Mars and the search for biosignatures with the ExoMars Rover. Astrobiology 17:471–510ADSCrossRefGoogle Scholar
  64. Wehmiller JF (1993) Applications of organic geochemistry for Quaternary research: aminostratigraphy and aminochronology. In: Engel MH, Macko SA (eds) Organic Geochemistry. Plenum, New York, pp 755–784CrossRefGoogle Scholar
  65. Westall F (2008) Morphological biosignatures in early terrestrial and extraterrestrial materials. Space Sci Rev 135:95–114ADSCrossRefGoogle Scholar
  66. Westall F (2012) The early earth. In: Impey C, Lunine J, Funes J (eds) Frontiers of astrobiology. Cambridge University Press, Cambridge, p 331Google Scholar
  67. Westall F, Cavalazzi B (2011) Biosignature in rocks. In: Thiel V, Reitner J (eds) Encyclopedia of geobiology. Springer, Berlin, pp 189–201CrossRefGoogle Scholar
  68. Westall F, de Ronde CE, Southam G, Grassineau N, Colas M, Cockell C, Lammer H (2006) Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philos Trans R Soc Lond B Biol Sci 361(1474):1857–1876.  https://doi.org/10.1098/rstb.2006.1896CrossRefGoogle Scholar
  69. Westall F, Folk RL (2003) Exogenous carbonaceous microstructures in early Archaean cherts and BIFs from the Isua Greenstone Belt: implications for the search for life in ancient rocks. Precambrian Res 126:313–330ADSCrossRefGoogle Scholar
  70. Westall F, Foucher F, Cavalazzi B et al (2011a) Volcaniclastic habitats for early life on earth and Mars: a case study from ∼3.5Ga-old rocks from the Pilbara, Australia. Planet Space Sci 59:1093–1106ADSCrossRefGoogle Scholar
  71. Westall F, Cavalazzi B, Lemelle L et al (2011b) Implications of in situ calcification for photosynthesis in a ~3.3Ga-old microbial biofilm from the Barberton greenstone belt, South Africa. Earth Planet Sci Lett 310:468–479ADSCrossRefGoogle Scholar
  72. Westall F, Foucher F, Bost N et al (2015) Biosignatures on Mars: what, where and how? Implications for the search for Martian life. Astrobiology 15:998–1029ADSCrossRefGoogle Scholar
  73. Yung YL, Russell MJ, Parkinson CD (2010) The search for life on Mars. J Cosmol 5:1121–1130Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jorge L. Vago
    • 1
    Email author
  • Frances Westall
    • 2
  • Barbara Cavalazzi
    • 3
    • 4
  • The ExoMars Science Working Team
  1. 1.European Space Agency, ESTECNoordwijkThe Netherlands
  2. 2.Centre de Biophysique Moléculaire, CNRSOrléansFrance
  3. 3.Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di BolognaBolognaItaly
  4. 4.Department of GeologyUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations