Detection of Biosignatures Using Raman Spectroscopy

  • Frédéric FoucherEmail author
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)


Raman spectroscopy is particularly suited for the study of biosignatures: it is able to detect both organic and mineral phases, is very sensitive to carbonaceous matter and biogenic pigments, and can be used in the field and for space exploration. Thus, in a few decades it has become a key method in (micro-)palaeontology, geomicrobiology and astrobiology. In this chapter, we present an overview of the different types of biosignatures that can be detected and/or characterized using Raman spectroscopy: organic molecules, microfossils, biominerals or even living cells. A particular focus is made on the role of the excitation laser wavelength on the type of biosignatures that can be studied.



I thank the Centre National d’Etudes Spatiales for funding. I thank Frances Westall and Keyron Hickman-Lewis for their useful comments.


  1. Alleon J, Bernard S, Guillou CL et al (2016) Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy. Nat Commun 7:11977ADSCrossRefGoogle Scholar
  2. Altwegg K, Balsiger H, Bar-Nun A et al (2016) Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P/Churyumov-Gerasimenko. Sci Adv 2(e1600285):1–5Google Scholar
  3. Baqué M, Verseux C, Böttger U et al (2016) Preservation of biomarkers from cyanobacteria mixed with mars like regolith under simulated Martian atmosphere and UV flux. Orig Life Evol Biosph 46:289–310ADSCrossRefGoogle Scholar
  4. Beegle LW, Bhartia R, DeFlores L et al (2014) SHERLOC: scanning habitable environments with raman & luminescence for organics & chemicals, an investigation for 2020. In: 45th Lunar and planetary science conference, Abstract 2835Google Scholar
  5. Beyssac O, Goffé B, Chopin C et al (2002) Raman spectra of carbonaceous material in metasidiments: a new geothermometer. J Metamorph Geol 20:859–871ADSCrossRefGoogle Scholar
  6. Beyssac O, Goffé B, Petitet J-P et al (2003) On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim Acta Part A 59:2267–2276ADSCrossRefGoogle Scholar
  7. Brack A (2001) Water the spring of life. In: Baumstark-Khan C, Horneck G (eds) Astrobiology: the quest for the conditions of life. Springer, New York, pp 79–88Google Scholar
  8. Brasier MD, Green OR, Jephcoat AP et al (2002) Questioning the evidence for earth’s oldest fossils. Nature 416:76–81ADSCrossRefGoogle Scholar
  9. Bustin RM, Ross JV, Rouzaud JN (1995) Mechanisms of graphite formation from kerogen: experimental evidence. Int J Coal Geol 28:1–36CrossRefGoogle Scholar
  10. Campbell KA, Lynne BY, Handley KM et al (2015) Tracing biosignature preservation of geothermally silicified microbial textures into the geological record. Astrobiology 15:858–882ADSCrossRefGoogle Scholar
  11. Culka A, Jehlička J, Vandenabeele P et al (2011) The detection of biomarkers in evaporite matrices using a portable Raman instrument under alpine conditions. Spectrochim Acta Part A 80:8–13ADSCrossRefGoogle Scholar
  12. Culka A, Jehlička J, Strnad L (2012) Testing a portable Raman instrument: the detection of biomarkers in gypsum powdered matrix under gypsum crystals. Spectrochim Acta Part A 86:347–350ADSCrossRefGoogle Scholar
  13. Danger G, Orthous-Daunay F-R, de Marcellus P et al (2013) Characterization of laboratory analogs of interstellar/cometary organic residues using very high resolution mass spectrometry. Geochim Cosmochim Acta 118:184–201ADSCrossRefGoogle Scholar
  14. De Gelder J, Gussem KD, Vandenabeele P et al (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38:1133–1147ADSCrossRefGoogle Scholar
  15. de Marcellus P, Meinert C, Myrgorodska I et al (2015) Aldehydes and sugars from evolved precometary ice analogs: importance of ices in astrochemical and prebiotic evolution. Proc Natl Acad Sci USA 112(4):965–970ADSCrossRefGoogle Scholar
  16. Deing T, Hollricher O, Toporski J (2010) Confocal Raman spectroscopy, Springer series in optical sciences 158. Heidelberg, BerlinGoogle Scholar
  17. Deldicque D, Rouzaud JN, Velde B (2016) A Raman - HRTEM study of the carbonization of wood: a new Raman-based paleothermometer dedicated to archaeometry. Carbon 102:319–329CrossRefGoogle Scholar
  18. Dickens J, Irvine W, Nummelin A et al (2001) Searches for new interstellar molecules, including a tentative detection of aziridine and a possible detection of propenal. Spectrochimica Acta Part A 57:643–660ADSCrossRefGoogle Scholar
  19. Dubessy J, Caumon MC, Rull F (2012) Raman spectroscopy applied to earth sciences and cultural heritage, EMU notes in mineralogy 12. The Mineralogical Society of Great Britain and IrelandGoogle Scholar
  20. Edwards HGM (2004) Raman spetroscopic protocol for the molecular recognition of key biomarkers in astrobiological exploration. Orig Life Evol Biosph 34:3–11ADSCrossRefGoogle Scholar
  21. Edwards HGM, Hutchinson I, Ingley R et al (2013) Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission. Astrobiology 13:543–549ADSCrossRefGoogle Scholar
  22. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57ADSCrossRefGoogle Scholar
  23. Foucher F, Westall F (2013) Raman imaging of metastable opal in carbonaceous microfossils of the 700–800Ma old draken formation. Astrobiology 13:57–67ADSCrossRefGoogle Scholar
  24. Foucher F, Ammar MR, Westall F (2015) Revealing the biotic origin of silicified Precambrian carbonaceous microstructures using Raman spectroscopic mapping, a potential method for the detection of microfossils on Mars. J Raman Spectrosc 46:873–879ADSCrossRefGoogle Scholar
  25. Foucher F, Guimbretière G, Bost N et al (2017) Petrographical and mineralogical applications of Raman mapping. In: Maaz K (ed) Raman spectroscopy and applications. IntechOpen, London, pp 163–180Google Scholar
  26. Jehlička J, Bény C (1999) First and second order Raman spectra of natural highly carbonified organic compounds from metamorphic rocks. J Mol Struct 480–481:541–545ADSCrossRefGoogle Scholar
  27. Jehlička J, Urban O, Pokorny J (2003) Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. Spectrochim Acta Part A 59:2341–2352ADSCrossRefGoogle Scholar
  28. Jehlička J, Edwards HGM, Vitek P (2009) Assessment of Raman spectroscopy as a tool for the non-destructive identification of organic minerals and biomolecules for Mars studies. Planet Space Sci 57:606–613ADSCrossRefGoogle Scholar
  29. Jehlička J, Culka A, Nedbalova L (2016) Colonization of snow by microorganisms as revealed using miniature Raman spectrometers—possibilities for detecting carotenoids of psychrophiles on Mars? Astrobiology 16:913–924ADSCrossRefGoogle Scholar
  30. Lahfid A, Beyssac O, Deville E et al (2010) Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova 22:354–360ADSCrossRefGoogle Scholar
  31. Lazcano A (2011) Origin of life. In: Gargaud M, Amils R, Cernicharo Quintanilla J et al (eds) Encyclopedia of astrobiology, vol 2. Springer, Heidelberg, pp 1183–1190CrossRefGoogle Scholar
  32. Lopez-Reyes G, Rull F, Venegas G et al (2013) Analysis of the scientific capabilities of the ExoMars Raman laser spectrometer instrument. Eur J Mineral 25:721–733CrossRefGoogle Scholar
  33. Marshall CP, Emry JR, Marshall AO (2011) Haematite pseudomicrofossils present in the 3.5-billion-year-old apex chert. Nat Geosci 4:240–243ADSCrossRefGoogle Scholar
  34. Marshall AO, Emry JR, Marshall CP (2012) Multiple generations of carbon in the apex chert and implications for preservation of microfossils. Astrobiology 12:160–166ADSCrossRefGoogle Scholar
  35. Marshall CP, Marshall AO (2013) Raman hyperspectral imaging of microfossils: potential pitfalls. Astrobiology 13:920–931ADSCrossRefGoogle Scholar
  36. Meinert C, Myrgorodska I, de Marcellus P et al (2016) Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352:208–212ADSCrossRefGoogle Scholar
  37. Merlin JC (1985) Resonance Raman spectroscopy of carotenoids and carotenoid containing systems. Pure Appl Chem 57:785–792CrossRefGoogle Scholar
  38. Moreau JW, Sharp TG (2004) A transmission electron microscopy study of silica and kerogen biosignatures in ~1.9 Ga gunflint microfossils. Astrobiology 4:196–210ADSCrossRefGoogle Scholar
  39. Mosier-Boss P, Putnam MD (2013) The evaluation of two commercially available, portable Raman systems. Anal Chem Insights 8:83–97CrossRefGoogle Scholar
  40. Pasteris JD, Wopenka B (2002) Images of the earth’s earliest fossils? Nature 420:476–477CrossRefGoogle Scholar
  41. Pasteris JD, Wopenka B (2003) Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3:727–738ADSCrossRefGoogle Scholar
  42. Patel M, Bérces A, Kerékgyarto T et al (2004) Annual solar UV exposure and biological effective dose rates on the Martian surface. Adv Space Res 33:1247–1252ADSCrossRefGoogle Scholar
  43. Pflug HD, Jaeschke-Boyer H (1979) Combined structural and chemical analysis of 3.800-Myr-Old microfossils. Nature 280:483–486ADSCrossRefGoogle Scholar
  44. Poilblanc R, Crasnier F (2006) Spectroscopies Infrarouge et Raman, Collection Grenoble Science (ed) EDP Sciences, GrenobleGoogle Scholar
  45. Qu Y, Engdahl A, Zhu S et al (2015) Ultrastructural heterogeneity of carbonaceous material in ancient cherts: investigating biosignature origin and preservation. Astrobiology 15(10):825–842ADSCrossRefGoogle Scholar
  46. Quirico E, Montagnac G, Rouzaud JN et al (2009) Precursor and metamorphic condition effects on Raman spectra of poorly ordered carbonaceous matter in chondrites and coals. Earth Planet Sci Lett 287:185–193ADSCrossRefGoogle Scholar
  47. Rividi N, van Zuilen M, Philippot P et al (2010) Calibration of carbonate composition using micro-Raman analysis: application to planetary surface exploration. Astrobiology 10:293–309ADSCrossRefGoogle Scholar
  48. Rouzaud JN, Oberlin A (1989) Structure, microtexture, and optical properties of anthracene and saccharose-based carbons. Cent Eur J Phys 27:517–529Google Scholar
  49. Ruiz-Mirazo K, Moreno A (2011) Life. In: Gargaud M, Amils R, Cernicharo Quintanilla J et al (eds) Encyclopedia of astrobiology, vol 2. Springer, Heidelberg, pp 919–921CrossRefGoogle Scholar
  50. Rull-Pérez F, Martinez-Frias J (2006) Raman spectroscopy goes to Mars. Spectroscopy Europe 18:18–21Google Scholar
  51. Schmitt-Kopplin P, Gabelica Z, Gougeon RD et al (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci USA 7(7):2763–2768ADSCrossRefGoogle Scholar
  52. Schopf JW, Kudryavtsev AB, Agresti DG et al (2002a) Laser-Raman imagery of earth’s earliest fossils. Nature 416:73–76ADSCrossRefGoogle Scholar
  53. Schopf JW, Kudryavtsev AB, Agresti DG et al (2002b) Images of the earth’s earliest fossils? Schopf et al reply. Nature 420:477ADSCrossRefGoogle Scholar
  54. Schopf JW, Kudryavtsev AB, Agresti DG et al (2005) Raman imagery: a new approach to assess the geochemical maturity and biogenecity of permineralized precambrian fossils. Astrobiology 5:333–371ADSCrossRefGoogle Scholar
  55. Sforna MC, van Zuilen MA, Philippot P (2014) Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old apex chert, Western Australia. Geochim Cosmochim Acta 124:18–33ADSCrossRefGoogle Scholar
  56. Vandenabeele P, Jehlička J, Vitek P, Edwards HGM (2012) On the definition of Raman spectroscopic detection limits for the analysis of biomarkers in solid matrices. Planet Space Sci 62:48–54ADSCrossRefGoogle Scholar
  57. Vitek P, Osterrothova K, Jehlička J (2009) Beta-carotene - a possible biomarker in the Martian evaporitic environment: Raman micro-spectroscopic study. Planet Space Sci 57:454–459ADSCrossRefGoogle Scholar
  58. Vitek P, Jehlička J, Edwards HGM et al (2012) The miniaturized Raman system and detection of traces of life in halite from the atacama desert: some considerations for the search for life signatures on Mars. Astrobiology 12:1095–1099ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre de Biophysique Moléculaire-CBM, CNRSOrléansFrance

Personalised recommendations