Exoplanetary Biosignatures for Astrobiology

  • John Lee GrenfellEmail author
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)


Since life evolved on our planet there have been subtle interplays between biology and Earth System Components (atmosphere-lithosphere-ocean-interior). Life, for example, can impact weathering rates which, in turn, influence climate stabilizing feedback cycles on Earth. Photosynthesis is ultimately responsible for our oxygen-rich atmosphere, which favours the formation of the protective ozone layer. The recent rise of exoplanetary science has led to a re-examination of such feedbacks and their main drivers under different planetary conditions. In this work we present a brief overview of potential biosignatures (indicators of life) and review knowledge of the main processes, which influence them in an exoplanetary context. Biosignature methods can be broadly split into two areas, namely “in-situ” and “remote”. Criteria employed to detect biosignatures are diverse and include fossil morphology, isotope ratios, patterns in the chemical constituents of cells, degree of chirality, shifts from thermal or redox equilibrium, and changes in the abundance of atmospheric species. For the purposes of this review, our main focus lies upon gas-phase species present in Earth-like atmospheres, which could be detected remotely by spectroscopy. We summarize current knowledge based on the modern (and early) Earth and the Solar System then review atmospheric model studies for Earth-like planets, which predict climate, photochemistry and potential spectral signals of biosignature species.


  1. Agúndez M (2017) Organohalogens in space. Nat Astron 1:655–656ADSCrossRefGoogle Scholar
  2. Airapetian VS, Glocer A, Gronoff G et al (2016) Prebiotic chemistry and atmospheric warming of early Earth by an active young sun. Nat Geosci 9:452–455ADSCrossRefGoogle Scholar
  3. Anbar AD, Duan Y, Lyons TW et al (2007) A whiff of oxygen before the great oxidizing event. Nature 317:1903–1906Google Scholar
  4. Arney G, Domagal-Goldman S, Meadows VS et al (2016) The pale orange dot: the spectrum and habitability of Hazy Archean Earth. Astrobiology 16:873–899ADSCrossRefGoogle Scholar
  5. Arnold L, Gillet S, Lardière et al (2002) A test for the search for life on extrasolar planets. Looking for the terrestrial vegetation signature in Earthshine spectrum. Astron Astrophys 92:231–237ADSCrossRefGoogle Scholar
  6. Atreya SK, Mahaffy PR, Wong AS (2007) Methane and related trace species on Mars: origin, loss, implications for life and habitability. Planet Space Sci 55:358–369ADSCrossRefGoogle Scholar
  7. Barstow J, Irwin PGJ (2016) Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system? MNRAS 461:L92–L96ADSCrossRefGoogle Scholar
  8. Bates DR, Nicolet M (1950) The photochemistry of atmospheric water vapor. J Geophys Res 55:301–327ADSCrossRefGoogle Scholar
  9. Benneke B, Seager S (2012) Atmospheric retrieval for Super-Earths. Astrophys J 753:2CrossRefGoogle Scholar
  10. Benner SA (2010) Defining life. Astrobiology 10:1021–2030ADSCrossRefGoogle Scholar
  11. Benton MJ, Twitchet RJ (2003) How to kill (almost) all life: the end-Permian extinction event. Trends Ecol Evol 18:358–365CrossRefGoogle Scholar
  12. Bolcar MR, Balasubramanian K, Crooke J et al (2016) Technology gap assessment for a future large-aperture ultraviolet-optical infrared space telescope. Astron Telesc Instrum Syst 2:041209CrossRefGoogle Scholar
  13. Boschker HTS, Middleburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol 40:85–95CrossRefGoogle Scholar
  14. Buick R (2007) Did the Proterozoic ‘Canfield ocean’ cause a laughing gas greenhouse? Geobiology 5:97–100ADSCrossRefGoogle Scholar
  15. Campbell H, Squire RJ (2010) The mountains that triggered the Late Neoproterozoic increase in oxygen: the second great oxidation event. Geochim Cosmochim Acta 74:4187–4206ADSCrossRefGoogle Scholar
  16. Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 237:1–20ADSCrossRefGoogle Scholar
  17. Catling DC, Krissansen-Totton J, Kiang NY, Crisp D, Robinson TD et al (2018) Exoplanet biosignatures: a framework for their assessment. Astrobiology 18:709–738ADSCrossRefGoogle Scholar
  18. Chapman S (1930) On ozone and atomic oxygen in the upper atmosphere. The Lond Edin Dub Philps Mag J Sci 10:369–383CrossRefGoogle Scholar
  19. Cockell C (2016) Habitability: a review. Astrobiology 16:89–117ADSCrossRefGoogle Scholar
  20. Court RW, Sephton MA (2012) Extrasolar planets and false atmospheric biosignatures: the role of micrometeoroids. Planet Space Sci 73:233–242ADSCrossRefGoogle Scholar
  21. Cowan NB, Abbot DS, Voigt A (2012) A false positive for ocean glint on exoplanets: the latitude-albedo effect. Astrophys J 752:L3ADSCrossRefGoogle Scholar
  22. Crutzen PJ (1970) The influence of nitrogen oxides upon the atmospheric ozone content. Q J R Met S 96:320–325ADSCrossRefGoogle Scholar
  23. Des Marais DJ, Harwit MO, Jucks KW (2002) Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2:153–181ADSCrossRefGoogle Scholar
  24. Dick SJ (1984) The plurality of worlds: the extra-terrestrial life debate from Democritus to Kant. Cambridge University Press, Cambridge, UKGoogle Scholar
  25. Domagal-Goldman S, Meadows VS, Claire MW (2011) Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11:419–441ADSCrossRefGoogle Scholar
  26. Domagal-Goldman S, Segura A, Claire MW (2014) Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth. Astrphys J Lett 787:2CrossRefGoogle Scholar
  27. Dressing C, Charbonneau D (2015) The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys J 807:45ADSCrossRefGoogle Scholar
  28. Encrenaz T (2014) Infrared spectroscopy of exoplanets: observational constraints. Philos Trans R Soc A 372:20130083ADSCrossRefGoogle Scholar
  29. Farquhar GD, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial planets and the atmosphere. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Elsevier, New York, pp 47–70CrossRefGoogle Scholar
  30. Feulner G (2012) The faint young Sun problem. Rev Geophys 50:1–29CrossRefGoogle Scholar
  31. Formisano V, Atreya S, Encrenaz T (2004) Detection of methane in the atmosphere of Mars. Nature 306:1758–1761Google Scholar
  32. Fortier A, Beck T, Benz W (2014) CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits. J Astron Telesc Instrum Syst 9143Google Scholar
  33. Fujii T, Moynier F, Blichert-Toft J et al (2014) Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments. Geochim Cosmochim Acta 140:553–576ADSCrossRefGoogle Scholar
  34. Fujii Y, Angerhausen D, Deitrick R et al (2018) Exoplanet biosignatures: observational prospects. Astrobiology 18(6). doi: Scholar
  35. Gaidos E (2013) Candidate planets in the habitable zones of Kepler stars. Astophys J 770:2CrossRefGoogle Scholar
  36. Gaillard F, Scaillet B, Arndt NT (2011) Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478:229–232ADSCrossRefGoogle Scholar
  37. Gebauer S, Grenfell JL, Stock JW et al (2017) Evolution of Earth-like extrasolar planetary atmospheres. Astrobiology 17:27–54ADSCrossRefGoogle Scholar
  38. Gebauer S, Grenfell JL, Lehmann R, Rauer H (2018) Evolution of Earth-like planetary atmospheres around M Dwarf Stars: assessing the atmospheres and biospheres with a coupled atmosphere biogeochemical model. Astrobiology 18:856–872ADSCrossRefGoogle Scholar
  39. Godolt M, Grenfell JL, Hamann-Reinus A et al (2015) 3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars. Planet Space Sci 111:62–76ADSCrossRefGoogle Scholar
  40. Godolt M, Grenfell JL, Kitzmann D et al (2016) Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling. Astron Astrophys 592:A36CrossRefGoogle Scholar
  41. Grasset O, Dougherty MK, Coustenis A et al (2012) JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet Space Sci 78:1–21ADSCrossRefGoogle Scholar
  42. Grenfell JL (2017) A review of exoplanetary biosignatures. Phys. Rep. 713:1–17ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. Grenfell JL, Stracke B, von Paris P et al (2007) The response of atmospheric chemistry on earthlike planets around F, G and K stars to small variations in orbital distance. Planet Space Sci 55:661–671ADSCrossRefGoogle Scholar
  44. Grenfell JL, Rauer H, Selsis F et al (2010) Co-evolution of atmospheres, life and climate. Astrobiology 10:77–88ADSCrossRefGoogle Scholar
  45. Grenfell JL, Gebuaer S, von Paris P et al (2011) Sensitivity of biomarkers to changes in chemical emissions in Earth’s Proterozoic atmosphere. Icarus 211:81–88ADSCrossRefGoogle Scholar
  46. Grenfell JL, Griessmeier J-M, von Paris P et al (2012) Response of atmospheric biomarkers to NOx-induced photochemistry generated by stellar cosmic rays for Earth-like planets in the habitable zone of M dwarf stars. Astrobiology 12:1109–1122ADSCrossRefGoogle Scholar
  47. Grenfell JL, Gebauer S, von Paris et al (2014) Sensitivity of biosignatures on Earth-like planets orbiting in the habitable zone of cool M-dwarf stars to varying stellar UV radiation and surface biomass emissions. Planet Space Sci 98:66–76ADSCrossRefGoogle Scholar
  48. Griffith RL, Wright JT, Maldonado J et al (2015) The G infrared search for extraterrestrial civilizations with large energy supplies. Astrophys J 217(2)Google Scholar
  49. Guzmán-Marmolejo A, Segura A, Escobar-Briones E (2013) Abiotic production of methane in terrestrial planets. Astrobiology 13:550–559ADSCrossRefGoogle Scholar
  50. Haagen-Smit AJ (1952) Chemistry and physiology of Los Angeles smog. Ind Eng Chem 44:1342–1346CrossRefGoogle Scholar
  51. Haghighipor N (2015) Eta-Earth. Encyclopedia of astrobiology. Springer, HeidelbergGoogle Scholar
  52. Hall DT, Strobel DF, Feldman PD et al (1995) Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature 373:677–681ADSCrossRefGoogle Scholar
  53. Hall DT, Feldman PD, McGrath MIA et al (1998) The far-ultraviolet oxygen airglow of Europa and Ganymede. Astrophys J 449:475–481ADSCrossRefGoogle Scholar
  54. Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ et al (2009) A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–1137ADSCrossRefGoogle Scholar
  55. Hedelt P, Alonso R, Brown T et al (2011) Venus transit 2004: illustrating the capacity of exoplanet transmission spectroscopy. Astron Astrophys 533:A136CrossRefGoogle Scholar
  56. Hedelt P, von Paris P, Godolt M et al (2013) Spectral features of Earth-like planets and their detectability at different orbital distances around F, G, and K-type stars. Astron Astrophys 553:A9CrossRefGoogle Scholar
  57. Heller R, Barnes R (2013) Exomoon habitability constrained by illumination and tidal heating. Astrobiology 13:18–46ADSCrossRefGoogle Scholar
  58. Holland HD (2002) Volcanic gases, black smokers and the great oxidation event. Geochim Cosmochim Acta 66:3811–3826ADSCrossRefGoogle Scholar
  59. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond Biol Sci 361:903–915CrossRefGoogle Scholar
  60. Holmen K (1992) The global carbon cycle. London Academic Press, London, pp 237–262Google Scholar
  61. Höning D, Hansen-Goos H, Airo A (2014) Biotic vs. abiotic Earth: a model for mantle hydration and continental coverage. Planet Space Sci 98:5–13ADSCrossRefGoogle Scholar
  62. Horler DNH, Dockray M, Barber J (1983) The red edge of plant leaf reflectance. Int J Remote Sens 4:273–288CrossRefGoogle Scholar
  63. Horneck G, Walter N, Westall F et al (2016) AstRoMap European Astrobiology Roadmap. Astrobiology 16:201–243ADSCrossRefGoogle Scholar
  64. Horner J, Jones BW (2008) Jupiter – friend or foe? I: the asteroids. Int J Astrobiol 7:251–261CrossRefGoogle Scholar
  65. Hu R, Seager S (2014) Photochemistry in terrestrial planet atmospheres III. ApJ 784:1CrossRefGoogle Scholar
  66. Huang S (1959) Occurrence of life in the universe. Am Sci 47:397–402ADSGoogle Scholar
  67. Hunten DM (1988) Mercury. University of Arizona Press, Tucson, AZGoogle Scholar
  68. International Panel on Climate Change (IPCC) Climate Change (2007) In: Solomon S et al (eds) The physical basis. IPCC, GenevaGoogle Scholar
  69. Joyce G, Deamer DW, Fleischaker GR (1994) In: Deamer DW, Fleichacker GR (eds) Origins of life: the central concepts. Jones and Bartlett, Boston, pp xi–xiiGoogle Scholar
  70. Kaltenegger L, Sasselov D (2011) Exploring the habitable zone for Kepler planetary candidates. ApJ 736:2CrossRefGoogle Scholar
  71. Kaltenegger L, Traub WA, Jucks KW et al (2007) Spectral evolution of an Earth-like planet. ApJ 658:1CrossRefGoogle Scholar
  72. Kaltenegger L, Miguel Y, Rugheimer S (2012) Rocky exoplanet characterization and atmospheres. Int J Astrobiol 11:297–307CrossRefGoogle Scholar
  73. Kane SR, Hill ML, Kasting JF et al (2016) A catalogue of Kepler habitable zone exoplanet candidates. ApJ 830(1)ADSCrossRefGoogle Scholar
  74. Kasting JF, Catling DC (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41:429–463ADSCrossRefGoogle Scholar
  75. Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128ADSCrossRefGoogle Scholar
  76. Kawahara H, Matsuo T, Takami M et al (2012) Can ground-based telescopes detect the 1.27 micron absorption feature as a biomarker in exoplanets? ApJ 758:1CrossRefGoogle Scholar
  77. Kiang NY, Segura A, Tinetti G et al (2007) Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology. 7:252–274ADSCrossRefGoogle Scholar
  78. Kislyakova KG, Johnstone CP, Odert P et al (2014) Stellar wind interaction and pick-up ion escape of the Kepler-11 “super-Earths”. Astron Astrophys 562:A116CrossRefGoogle Scholar
  79. Kitzmann D (2016) Revisiting the scattering greenhouse effect of CO2 ice clouds. ApJL 817:2CrossRefGoogle Scholar
  80. Kitzmann D, Patzer ABC, von Paris P et al (2011) Clouds in the atmospheres of extrasolar planets. Astron Astrophys 531:A62CrossRefGoogle Scholar
  81. Kopp RE, Kirschvink JL, Hilburn IA et al (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA 102:11131–11136ADSCrossRefGoogle Scholar
  82. Kopparapu RK, Ramses M, Schttelkotte J et al (2014) Habitable zones around main sequence stars: dependence upon planetary mass. ApJL 787:2CrossRefGoogle Scholar
  83. Korpela EJ, Sallmen SM, Greene DL (2015) Modeling indications of technology in planetary transit light curves – dark-side illumination. ApJ 809:2CrossRefGoogle Scholar
  84. Krissansen-Totton J, Bergsman DS, Catling DC (2016) On detecting biosignatures from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16:39–67ADSCrossRefGoogle Scholar
  85. Kroopnick P, Craig H (1972) Atmospheric oxygen: isotopic composition and solubility fractionation. Science 175:54–55ADSCrossRefGoogle Scholar
  86. Kump LR (1991) Interpreting carbon-isotope excursions: Strangelove oceans. Geology 19:299–302ADSCrossRefGoogle Scholar
  87. Kump LR, Junium C, Arthur MC et al (2011) Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event. Science 334:1694–1696ADSCrossRefGoogle Scholar
  88. Lammer H, Bredehöft JH, Coustenis A et al (2009) What makes a planet habitable? Astron Astrophys Rev 17:181–189ADSCrossRefGoogle Scholar
  89. Lasaga AC, Ohmoto H (2002) The oxygen geochemical cycle: dynamics and stability. Geochim Cosmochim Acta 66:361–381ADSCrossRefGoogle Scholar
  90. Laskar J, Joutel F, Roboutal P et al (1993) Stabilization of the Earth’s obliquity by the Moon. Nature 361:615–617ADSCrossRefGoogle Scholar
  91. Lederberg J (1965) Signs of life. Nature 207:9–13ADSCrossRefGoogle Scholar
  92. Lefèvre F, Forget F (2009) Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460:720–723ADSCrossRefGoogle Scholar
  93. Levine JS, Shaw EF (1983) In situ aircraft measurements of enhanced levels of N2O associated with thunderstorm lightning. Nature 303:312–314ADSCrossRefGoogle Scholar
  94. Levine JS, Hughes RE, Chameides WL et al (1979) N2O and CO production by electric discharge: atmospheric implications. Geophys Res Lett 6:557–559ADSCrossRefGoogle Scholar
  95. Lightsey PA, Atkinson CB, Clampin MC et al (2012) James Webb Space Telescope: large deployable telescope in space. Opt Eng 51:1CrossRefGoogle Scholar
  96. Lin HW, Abad GG, Loeb A (2014) Detecting industrial pollution in the atmospheres of Earth-planets. Astrophys J Lett 791:1CrossRefGoogle Scholar
  97. Lovelock JE (1965) A physical basis for life detection experiments. Nature 207:568–570ADSCrossRefGoogle Scholar
  98. Ludwig W, Eggl S, Neubauer D et al (2016) Effective stellar flux calculations for limits of life-supporting zones of exoplanets. MNRAS 458:3752–3759ADSCrossRefGoogle Scholar
  99. Luger R, Barnes R (2015) Extreme water loss and abiotic O2 buildup on planets throughout the habitable zone on M-dwarfs. Astrobiology 15:119–143ADSCrossRefGoogle Scholar
  100. Margulis LM, Lovelock JE (1974) Biological modulation of the Earth’s atmosphere. Icarus 21:471–489ADSCrossRefGoogle Scholar
  101. McElroy MB, McConnell JC (1971) Nitrous oxide: a natural source of NO. Am Met Soc 28:1095–1098Google Scholar
  102. Meadows VS, Reinhard CT, Arney GN et al (2018) Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology 18(6):630–662ADSCrossRefGoogle Scholar
  103. Merlis TM, Schneider T (2010) Atmospheric dynamics of Earth-like tidally-locked aquaplanets. J Adv Mod Earth Sys 2:13Google Scholar
  104. Mennesson B, Gaudi S, Seager S et al (2016) The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements. J Astron Telesc Instrum Syst 9904Google Scholar
  105. Misra A, Meadows VS, Claire MW et al (2014) Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. Astrobiology 14:67–86ADSCrossRefGoogle Scholar
  106. Montmessin F, Bertaux JL, Lefèvre F et al (2011) A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus 216:82–85ADSCrossRefGoogle Scholar
  107. Morrison D, Owen T (2003) The planetary system, 3rd edn. Addison-Wesley, Reading, MAGoogle Scholar
  108. Morton TD, Swift J (2014) The radius distribution of planets around cool stars. Astrophys J 791:10ADSCrossRefGoogle Scholar
  109. Muller C (2013) N2O as a biomarker: from the Earth and solar system to exoplanets. Astrophys Spa Sci Proc 35:99–106CrossRefGoogle Scholar
  110. Naa Mvondo D, Navarro-Gonzalez R, McKay CP et al (2001) The production of nitrogen oxides by lightning and coronal discharges in simulated early Earth, Venus and Mars environments. Adv Space Res 27:217–223ADSCrossRefGoogle Scholar
  111. Noack L, Rivoldini A, Van Hoolst T (2017) Volcanism and outgassing of stagnant-lid planets: implications for the habitable zone. PEP 269:40–57ADSGoogle Scholar
  112. Noll KS, Roush TL, Cruikshank DP et al (1997) Detection of ozone on Saturn’s satellites Rhea and Dione. Nature 388:45–47ADSCrossRefGoogle Scholar
  113. O’Malley-James JT, Greaves JS, Raven JA et al (2014) Swansong Biospheres II: the final signs of life on terrestrial exoplanets near the end of their habitable lifetimes. Int J Astrobiol 13:229–243CrossRefGoogle Scholar
  114. Pallé E, Osorio MRZ, Barena R et al (2009) Earth’s transmission spectrum from lunar eclipse measurements. Nature 459:814–816ADSCrossRefGoogle Scholar
  115. Pavlov AA, Kasting JF, Brown LL et al (2000) Greenhouse warming by CH4 in the atmosphere of Early Earth. J Geophys Res 105:11,981–11,990ADSCrossRefGoogle Scholar
  116. Perrier S, Bertaux JL, Lefèvre F et al (2006) Global distribution of total ozone on Mars from SPCAM/MEX UV measurements. J Geophys Res 111:E9CrossRefGoogle Scholar
  117. Pierrehumbert R, Gaidos E (2011) Hydrogen greenhouse planets beyond the habitable zone. Astrophys J Lett 734:L13ADSCrossRefGoogle Scholar
  118. Pilcher CB (2004) Biosignatures of Early Earths. Astrobiology 3:471–486ADSCrossRefGoogle Scholar
  119. Ramirez RM, Kopparapu R, Zugger ME et al (2014) Warming early Mars with CO2 and H2. Nat Geosci 7:59–63ADSCrossRefGoogle Scholar
  120. Rauer H, Gebauer S, von Paris P et al (2011) Potential biosignatures in super-Earth atmospheres. I. Spectral appearance of super-Earths around M dwarfs. Astron Astrophys 529:A8CrossRefGoogle Scholar
  121. Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 Mission. Exp Astron 38:249–330ADSCrossRefGoogle Scholar
  122. Raymond SN, Quinn T, Lunine JI (2007) High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability. Astrobiology 7:66–84ADSCrossRefGoogle Scholar
  123. Rein H, Fujii Y, Spiegel DS (2014) Some inconvenient truths about biosignatures involving two chemical species on Earth-like exoplanets. Proc Natl Acad Sci USA 111:6871–6875ADSCrossRefGoogle Scholar
  124. Ricker GR, Winn JN, Vanderspeck R et al (2014) Transiting exoplanet survey satellite. J Astron Telesc Instrum Syst 1:014003CrossRefGoogle Scholar
  125. Roberson AL, Roadt J, Halevy I et al (2011) Greenhouse warming by nitrous oxide and methane in the Proterozoic eon. Geobiology 9:313–320CrossRefGoogle Scholar
  126. Rodler F, López-Morales M (2014) Feasibility studies for the detection of O2 in an Earth-like exoplanet. Astrophys J 781:1CrossRefGoogle Scholar
  127. Rugheimer S, Kaltenegger L, Segura A et al (2015) Effect of UV on the spectral fingerprints of Earth-like planets orbiting M-stars. Astrobiology 809:1–16Google Scholar
  128. Sagan C, Thompson WR, Carlson R et al (1993) A search for life on Earth from the Galileo spacecraft. Nature 365:375–377CrossRefGoogle Scholar
  129. Samarkin VA, Madigan MT, Bowles MW et al (2010) Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geophys 3:341–344Google Scholar
  130. Sanroma E, Palle E, Parenteau MN et al (2014) Characterizing the purple Earth: measuring the globally-integrated spectral variability of the Archaean Earth. Astrophys J 780(1)Google Scholar
  131. Scalo J, Segura A, Fridlund M et al (2007) M stars as targets for terrestrial exoplanet searches and biosignature detection. Astrobiology 7:85–166ADSCrossRefGoogle Scholar
  132. Schidlowski M (1988) A 3800 million-year isotopic record of life from carbon in sedimentary rocks. Nature. 333:313–318ADSCrossRefGoogle Scholar
  133. Schindler TL, Kasting JF (2000) Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases. Icarus 145:262–271ADSCrossRefGoogle Scholar
  134. Schneider J (1994) On the search for O2 in extrasolar planets. Astrophys Space Sci 212:321–325ADSCrossRefGoogle Scholar
  135. Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71:1–10ADSCrossRefGoogle Scholar
  136. Schwieterman E et al (2015) Non photosynthetic pigments as potential biosignatures. Astrobiology 15:341–361ADSCrossRefGoogle Scholar
  137. Schwieterman EW, Cockell CS, Meadows VS et al (2016) Identifying planetary biosignature imposters: spectral features of CO and O4 resulting from O2/O3 production. Astrophys J 819(1)Google Scholar
  138. Schwieterman EW, Kiang NY, Parenteau MN, Harman CE, DasSarma S et al (2018) Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18:663–708ADSCrossRefGoogle Scholar
  139. Seager S, Turner E, Schafer LJ et al (2005) Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5:372–390ADSCrossRefGoogle Scholar
  140. Seager S, Bains W, Hu R (2013) Biosignature gases in H2-dominated atmospheres on rocky planets. Astrophys J 777:2ADSCrossRefGoogle Scholar
  141. Seager S, Bains W, Petkowski JJ (2016) Toward a list of molecules as potential biosignature gases for the search for life on exoplanets and applications to terrestrial biochemistry. Astrobiology 16:465–485ADSCrossRefGoogle Scholar
  142. Segura A, Krelove K, Kasting JF et al (2003) Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3:689–708ADSCrossRefGoogle Scholar
  143. Segura A, Kasting JF, Meadows VS et al (2005) Biosignatures from Earth-like planets around M-stars. Astrobiology 5:706–725ADSCrossRefGoogle Scholar
  144. Segura A, Walkowicz MVS et al (2010) The effect of a strong stellar flare on the atmospheric chemistry of an Earth-like planet orbiting an M-dwarf. Astrobiology 10:751–771ADSCrossRefGoogle Scholar
  145. Seinfeld JH, Pandis SN (2016) From air pollution to climate change. Wiley, Hoboken, NJGoogle Scholar
  146. Selsis F, Despoit D, Parisot J-P et al (2002) Signature of life on exoplanets: can Darwin produce false positive detections? Astron Astrophys 388:985–1003ADSCrossRefGoogle Scholar
  147. Shields AL, Ballard S, Johnson JA (2016) The habitability of planets orbiting M-dwarf stars. Phys Res 663:1–38ADSMathSciNetGoogle Scholar
  148. Simoncini E, Virgo N, Kleidon A et al (2013) Quantifying drivers of chemical disequilibrium: theory and application to methane in Earth’s atmosphere. Earth Syst Dyn 4:317–331ADSCrossRefGoogle Scholar
  149. Slanger TG, Copeland RA (2003) Energetic oxygen in the upper atmosphere and the laboratory. Chem Rev 103:4731–4766CrossRefGoogle Scholar
  150. Smith KC (2016) Life is hard: countering definitional pessimism concerning the definition of life. Int J Astrobiol 15:277–289CrossRefGoogle Scholar
  151. Smith AK, Marsh DR (2005) Processes that account for the ozone maximum at the mesopause. J Geophys Res 110:D23CrossRefGoogle Scholar
  152. Snellen I (2014) High-dispersion spectroscopy of extrasolar planets: from CO in hot Jupiters to O2 in exo-Earths. Philos Trans R Soc A 372:20130075ADSCrossRefGoogle Scholar
  153. Stam DM (2008) Spectropolarimetric signatures of Earth-like extrasolar planets. Astron Astrophys 482:989–1007ADSCrossRefGoogle Scholar
  154. Stamenkovic V, Noack L, Breuer D et al (2012) The influence of pressure-dependent viscosity on the thermal evolution of Super-Earths. Astrophys J 748:1ADSCrossRefGoogle Scholar
  155. Sterzik MF, Bagnul S, Palle E (2012) Biosignatures as revealed by spectropolarimetry of Earthshine. Nature 483:64–66ADSCrossRefGoogle Scholar
  156. Stevens A, Forgan D, James JOM (2016) Observational signatures of self-destructive civilizations. Int J Astrobiol 15:33–44CrossRefGoogle Scholar
  157. Stolarski RJ, Cicerone RS (1974) Stratospheric chlorine: a possible sink for ozone. Can J Chem 52:1610–1615CrossRefGoogle Scholar
  158. Sverjensky DA, Lee N (2010) The great oxidation event and mineral diversification. Elements 6:31–36CrossRefGoogle Scholar
  159. Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenhouse Gas Meas Manag 1:17–26ADSCrossRefGoogle Scholar
  160. Tabataba-Vakili F, Grenfell JL, Griessmeier J-M et al (2016) Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs. Astron Astrophys 585:A96ADSCrossRefGoogle Scholar
  161. Tackley PJ, Ammann M, Brodholt JP (2013) Mantle dynamics in super-Earths: post-perovskite rheology and self-regulation of viscosity. Icarus 225:50–61ADSCrossRefGoogle Scholar
  162. Teolis BD, Jones GH, Miles PF (2010) Cassini finds an oxygen-carbon dioxide atmosphere at Saturn’s icy moon Rhea. Science 333:6012Google Scholar
  163. Tian F, France K, Linsky JL et al (2014) High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets. Earth Planet Sci 385:22–27ADSCrossRefGoogle Scholar
  164. Tosi N, Godolt M, Stracke B et al (2017) The habitability of a stagnant-lid Earth. Astron Astrophys 605:A71CrossRefGoogle Scholar
  165. Traub WA (2015) Steps towards eta-Earth from Kepler data. Int J Astrobiol 14:359–363CrossRefGoogle Scholar
  166. Tyler RH (2008) Strong ocean tidal flow and heating on moons of the outer planets. Nature 456:770–772ADSCrossRefGoogle Scholar
  167. Vogel G (1999) Expanding the habitable zone. Science 286:70–71CrossRefGoogle Scholar
  168. von Paris P, Cabrera J, Godolt M et al (2011) Spectroscopic characterization of the atmospheres of potentially habitable planets: Gl581d as a model case study. Astron Astrophys 534:A26CrossRefGoogle Scholar
  169. von Paris P, Hedelt P, Selsis F et al (2013) Characterization of potentially habitable planets: retrieval of atmospheric and planetary properties from emission spectra. Astron Astrophys 551:A120CrossRefGoogle Scholar
  170. Walker SI, Bains W, Cronin L et al (2018) Exoplanet biosignatures: future directions. Astrobiology 18(6):779–824ADSCrossRefGoogle Scholar
  171. Wang Y, Tian F, Li T et al (2016) On the detection of carbon monoxide as an anti-biosignature in exoplanetary atmospheres. Icarus 266:15–23ADSCrossRefGoogle Scholar
  172. Wayne RP (1993) Chemistry of atmospheres, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  173. Webster CR, Mahaffy P, Atreya SK (2015) Mars methane detection and variability at gale crater. Science 412:415ADSCrossRefGoogle Scholar
  174. Werner MW, Swain MR, Vasisht G et al (2016) Extension of ATLAST/LUVOIR’s capabilities to 5 μm or beyond. J Astron Telesc Instrum Syst 2:041205CrossRefGoogle Scholar
  175. Williams DM, Gaidos E (2008) Detecting the glint of starlight on the oceans of distant planets. Icarus 195:927–937ADSCrossRefGoogle Scholar
  176. Woolf NJ, Smith PS, Traub WA et al (2002) The spectrum of Earthshine: a pale blue dot observed from the ground. Astrophys J 574:430–433ADSCrossRefGoogle Scholar
  177. Wordsworth R, Pierrehumbert R (2014) Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys J Lett 785:1–4CrossRefGoogle Scholar
  178. World Meteorological Organization (WMO) (1995) Scientific assessment of ozone depletion: 1994. Report Number 37. WMO, GenevaGoogle Scholar
  179. Yan F, Fosbury RAE, Petr-Gotzens MG et al (2015) High-resolution transmission spectrum of the Earth’s atmosphere-seeing Earth as an exoplanet using a lunar eclipse. Int J Astrobiol 14:255–266CrossRefGoogle Scholar
  180. Yang J, Cowan NB, Abbot DS (2013) Stabilising cloud feedback dramatically expands the habitable zone of tidally-locked planets. ApJL 771:2CrossRefGoogle Scholar
  181. Yung YL, DeMore WB (1999) Photochemistry of planetary atmospheres. Oxford University Press, OxfordGoogle Scholar
  182. Zahnle K, Freedman RS, Catling DC (2011) Is there methane on Mars? Icarus 212:493–503ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Extrasolar Planets and Atmospheres (EPA), Institute for Planetary Research (PF)German Aerospace Centre (DLR)BerlinGermany

Personalised recommendations