Advertisement

Photochemistry and Photoreactions of Organic Molecules in Space

  • Avinash Vicholous DassEmail author
  • Hervé Cottin
  • André Brack
Chapter
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)

Abstract

The primary aim of exobiology research is to recognize the routes leading to the initiation of life on Earth and its plausibility elsewhere in the universe. How would we recognize life if we encounter it or its remnants on an extraterrestrial body? This is the critical question of biosignature research to which astrochemical studies can contribute. Our understanding of preserved fossils and contemporary terrestrial life serves as a guide in the search for biosignatures in the universe. Of the various life-detection techniques available, carbon chemistry is particularly pertinent and perhaps the most significant biosignature (Summons et al., Astrobiology 11(2):157–181; 2011). ‘Life’ as we know it is based on C, H, N, O, P, S chemistry and the organic matter derived from its remains is ubiquitous on Earth, constituting an extensive chemical and isotopic record of past life that surpasses by a huge margin what is recorded by visible (and microscopic) fossils. Biosignatures are highly subjective to the geological conditions in which they form and the subsequent diagenetic and metamorphic events that reprocess them (Sleep, Cold Spring Harb Perspect Biol. 2(6): a002527; 2010) and thus need careful assessing before coming to concrete conclusions concerning biogenicity. However, chemistry alone is inadequate to detect life and collaborative efforts from all of the relevant investigations, combined with considerations of geological and environmental factors, will likely provide the best evidence for the presence or absence of life, in localities of interest.

References

  1. Bada JL (2013) New insights into prebiotic chemistry from Stanley Miller’s spark discharge experiments. Chem Soc Rev 42:2186CrossRefGoogle Scholar
  2. Barbier B, Chabin A, Chaput D et al (1998) Photochemical processing of amino acids in Earth orbit. Planet Space Sci 46:391–398ADSCrossRefGoogle Scholar
  3. Bernstein MP, Dworkin JP, Sandford SA et al (2002) Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416:401–403ADSCrossRefGoogle Scholar
  4. Bertrand M, Chabin A, Brack A et al (2012) The PROCESS experiment: exposure of amino acids in the EXPOSE-E experiment on the international space station and in laboratory simulations. Astrobiology 12:426–435ADSCrossRefGoogle Scholar
  5. Bertrand M, Chabin A, Colas C et al (2015) The AMINO experiment: exposure of amino acids in the EXPOSE-R experiment on the International Space Station and in laboratory. Int J Astrobiol 14:89–97CrossRefGoogle Scholar
  6. Bland PA, Berry FJ, Smith TB et al (1996) The flux of meteorites to the Earth and weathering in hot desert ordinary chondrite finds. Geochim Cosmochim Acta 60:2053–2059ADSCrossRefGoogle Scholar
  7. Boillot F, Chabin A, Buré C et al (2002) The perseus exobiology mission on MIR behaviour of amino acids and peptides in Earth Orbit. Orig Life Evol Biosph 32:359–385ADSCrossRefGoogle Scholar
  8. Briggs R, Ertem G, Ferris JP et al (1992) Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium. Orig Life Evol Biosph 22:287–307ADSCrossRefGoogle Scholar
  9. Bryson KL, Peeters Z, Salama F et al (2011) The ORGANIC experiment on EXPOSE-R on the ISS: flight sample preparation and ground control spectroscopy. Adv Space Res 48:1980–1996ADSCrossRefGoogle Scholar
  10. Bryson KL, Salama F, Elsaesser A et al (2015) First results of the ORGANIC experiment on EXPOSE-R on the ISS. Int J Astrobiol 14:55–66CrossRefGoogle Scholar
  11. Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132ADSCrossRefGoogle Scholar
  12. Cottin H, Gazeau M-C, Doussin J-F et al (2000) An experimental study of the photodegradation of polyoxymethylene at 122, 147 and 193 nm. J Photochem Photobiol Chem 135:53–64CrossRefGoogle Scholar
  13. Cottin H, Coll P, Coscia D et al (2008) Heterogeneous solid/gas chemistry of organic compounds related to comets, meteorites, Titan, and Mars: laboratory and in lower Earth orbit experiments. Adv Space Res 42:2019–2035ADSCrossRefGoogle Scholar
  14. Cottin H, Kotler JM, Billi D et al (2017) Space as a tool for astrobiology: review and recommendations for experimentations in earth orbit and beyond. Space Sci Rev 209:83–181ADSCrossRefGoogle Scholar
  15. Dass AV, Hickman-Lewis K, Brack A et al (2016) Stochastic prebiotic chemistry within realistic geological systems. Chemistry Select 1:4906–4926Google Scholar
  16. Demets R, Schulte W, Baglioni P (2005) The past, present and future of biopan. Adv Space Res 36(2):311–316ADSCrossRefGoogle Scholar
  17. Ehrenfreund P, Ruiterkamp R, Peeters Z et al (2007) The ORGANICS experiment on BIOPAN V: UV and space exposure of aromatic compounds. Planet Space Sci 55:383–400ADSCrossRefGoogle Scholar
  18. Ehrenfreund P, Ricco AJ, Squires D et al (2014) The O/OREOS mission—astrobiology in low Earth orbit. Acta Astronaut 93:501–508ADSCrossRefGoogle Scholar
  19. Elsaesser A, Quinn RC, Ehrenfreund P et al (2014) Organics exposure in orbit (OREOcube): a next-generation space exposure platform. Langmuir 30:13217–13227CrossRefGoogle Scholar
  20. Es-sebbar E, Bénilan Y, Fray N et al (2015) Optimization of a solar simulator for planetary-photochemical studies. Astrophys J Suppl Ser 218:19ADSCrossRefGoogle Scholar
  21. Foustoukos DI, Seyfried WE (2004) Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts. Science 304:1002–1005ADSCrossRefGoogle Scholar
  22. Freissinet C, Glavin DP, Mahaffy PR et al (2015) Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. J Geophys Res Planets 120:495–514ADSCrossRefGoogle Scholar
  23. Frey H (1980) Crustal evolution of the early earth: the role of major impacts. Precambrian Res 10:195–216ADSCrossRefGoogle Scholar
  24. Hashimoto H, Ushio K, Kaneko T et al (2002) Formation of prebiotic organics in space: its simulation on ground and conceptual design of space experiment in earth orbit. Adv Space Res 30:1495–1500ADSCrossRefGoogle Scholar
  25. Horita J, Berndt ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285:1055–1057CrossRefGoogle Scholar
  26. Horneck G (ed) (2007) Complete course in astrobiology. Weinheim, Wiley-VCHGoogle Scholar
  27. Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156CrossRefGoogle Scholar
  28. Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128ADSCrossRefGoogle Scholar
  29. Kobayashi K, Kaneko T, Saito T et al (1998) Amino acid formation in gas mixtures by high energy particle irradiation. Orig Life Evol Biosph 28:155–165ADSCrossRefGoogle Scholar
  30. Koeberl C (2006) The record of impact processes on the early Earth: a review of the first 2.5 billion years. In: Reimold WU, Gibson RL (eds) Processes on the Early Earth. GSA Special Papers 405, pp 1–22Google Scholar
  31. Kuzicheva EA, Gontareva NB (2001) Study of the peptide prebiotic synthesis in context of exobiological investigations on earth orbit. Adv Space Res 28:713–718ADSCrossRefGoogle Scholar
  32. Kuzicheva EA, Gontareva NB (2003) Exobiological investigations on Russian spacecrafts. Astrobiology 3:253–261ADSCrossRefGoogle Scholar
  33. Martins Z, Modica P, Zanda B et al (2015) The amino acid and hydrocarbon contents of the Paris meteorite: insights into the most primitive CM chondrite. Meteorit Planet Sci 50:926–943ADSCrossRefGoogle Scholar
  34. Martins Z, Cottin H, Kotler JM et al (2017) Earth as a tool for astrobiology—a European perspective. Space Sci Rev 209:43–81ADSCrossRefGoogle Scholar
  35. Maurette M (2006) Cometary micrometeorites in planetology, exobiology, and early climatology. In: Thomas PJ, Hicks RD, Chyba CF et al (eds) Comets and the origin and evolution of life. Advances in astrobiology and biogeophysics. Springer, Berlin, pp 69–111Google Scholar
  36. McCollom TM, Seewald JS (2001) A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim Cosmochim Acta 65:3769–3778ADSCrossRefGoogle Scholar
  37. McCollom TM, Seewald JS (2003) Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. Formic acid and formate. Geochim Cosmochim Acta 67:3625–3644ADSCrossRefGoogle Scholar
  38. McDermott JM, Seewald JS, German CR et al (2015) Pathways for abiotic organic synthesis at submarine hydrothermal fields. Proc Natl Acad Sci USA 112:7668–7672ADSCrossRefGoogle Scholar
  39. Meinert C, Myrgorodska I, de Marcellus P et al (2016) Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352:208–212ADSCrossRefGoogle Scholar
  40. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130:245–251ADSCrossRefGoogle Scholar
  41. Nahon L, de Oliveira N, Garcia GA et al (2012) DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL. J Synchrotron Radiat 19:508–520CrossRefGoogle Scholar
  42. Noblet A, Stalport F, Guan YY et al (2012) The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit. Astrobiology 12:436–444ADSCrossRefGoogle Scholar
  43. Peucker-Ehrenbrink B, Schmitz B (2012) Accretion of extraterrestrial matter throughout Earth’s history. Springer Science & Business MediaGoogle Scholar
  44. Ryder G (2002) Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. J Geophys Res Planets 107:6–1CrossRefGoogle Scholar
  45. Ryder G, Koeberl C, Mojzsis SJ (2000) Heavy bombardment of the Earth at 3.85 Ga: The search for petrographic and geochemical evidence. Orig Earth Moon 475Google Scholar
  46. Schwell M, Jochims H-W, Baumgärtel H et al (2006) VUV photochemistry of small biomolecules. Planet Space Sci 54:1073–1085ADSCrossRefGoogle Scholar
  47. Schwell M, Jochims H-W, Baumgärtel H et al (2008) VUV photophysics and dissociative photoionization of pyrimidine, purine, imidazole and benzimidazole in the 7–18eV photon energy range. Chem Phys 353:145–162CrossRefGoogle Scholar
  48. Sephton MA (2002) Organic compounds in carbonaceous meteorites. Nat Prod Rep 19:292–311CrossRefGoogle Scholar
  49. Sephton MA (2005) Organic matter in carbonaceous meteorites: past, present and future research. Philos Trans R Soc Math Phys Eng Sci 363:2729–2742ADSCrossRefGoogle Scholar
  50. Sherwood Lollar B, Frape SK, Weise SM et al (1993) Abiogenic methanogenesis in crystalline rocks. Geochim Cosmochim Acta 57:5087–5097ADSCrossRefGoogle Scholar
  51. Shock EL, Schulte MD (1998) Organic synthesis during fluid mixing in hydrothermal systems. J Geophys Res Planets 103:28513–28527CrossRefGoogle Scholar
  52. Stalport F, Coll P, Szopa C et al (2009) Investigating the photostability of carboxylic acids exposed to Mars surface ultraviolet radiation conditions. Astrobiology 9:543–549ADSCrossRefGoogle Scholar
  53. Stalport F, Guan YY, Coll P et al (2010) UVolution, a photochemistry experiment in low Earth orbit: investigation of the photostability of carboxylic acids exposed to Mars surface UV radiation conditions. Astrobiology 10:449–461ADSCrossRefGoogle Scholar
  54. Swallow AJ (1960) Radiation chemistry of organic compounds, vol 2. Pergamon Press, LondonGoogle Scholar
  55. Ten Kate IL, Garry JRC, Peeters Z et al (2005) Amino acid photostability on the Martian surface. Meteorit Planet Sci 40:1185–1193ADSCrossRefGoogle Scholar
  56. Thuillier G, Floyd L, Woods TN et al (2004) Solar irradiance reference spectra. In: Pap JM, Fox P, Fröhlich C et al (eds) Solar variability and its effect on climate. AGU/Geophys Monogr 141:171–194Google Scholar
  57. Tielens AGGM, Charnley SB (1997) Circumstellar and interstellar synthesis of organic molecules. Orig Life Evol Biosph 27:23–51ADSCrossRefGoogle Scholar
  58. Wächtershäuser G (2000) Life as we don’t know it. Science 289:1307–1308CrossRefGoogle Scholar
  59. Wächtershäuser G (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc Lond Ser B Biol Sci 361:1787–1808CrossRefGoogle Scholar
  60. Zellner NEB (2017) Cataclysm no more: new views on the timing and delivery of lunar impactors. Orig Life Evol Biosph 47:261–280ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Avinash Vicholous Dass
    • 1
    Email author
  • Hervé Cottin
    • 2
  • André Brack
    • 1
  1. 1.Centre de Biophysique Moléculaire, CNRSOrléansFrance
  2. 2.Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon LaplaceParisFrance

Personalised recommendations