Chemical Biosignatures at the Origins

  • André BrackEmail author
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)


Chemists searching for chemical biosignatures begin to define the chemical prerequisites for the emergence of life, a process based on organized molecules capable of self-reproduction and also with the capability of evolution. It is generally accepted that these prerequisites are liquid water and organic molecules, i.e. molecules that contained carbon and hydrogen atoms associated with atoms of oxygen, nitrogen and sulphur. This is not just an anthropocentric point of view, since water and carbon chemistry have very specific peculiarities. Two different kinds of chemical biosignatures are considered: an overrepresentation of organics and a long strand of homochiral sequences.



The occasion is given here to thank all the exo/astrobiologists I have met for the quality of their company while enjoying good science, good food, and good wine. They are too numerous to be quoted individually, but they know who they are, for sure. I thank also CNES and ESA for their constant support.


  1. Altwegg K, Balsiger H, Bar-Nun A et al (2015) 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347:1261952CrossRefGoogle Scholar
  2. Altwegg K, Balsiger H, Bar-Nun A et al (2016) Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P/Churyumov-Gerasimenko. Sci Adv 27:e1600285ADSCrossRefGoogle Scholar
  3. Aubrey AD, Cleaves HJ, Bada JL (2009) The role of submarine hydrothermal systems in the synthesis of amino acids. Orig Life Evol Biosph 39:91–108ADSCrossRefGoogle Scholar
  4. Bailey J (2001) Astronomical sources of circularly polarized light and the origin of homochirality. Orig Life Evol Biosph 31:167–183ADSCrossRefGoogle Scholar
  5. Bailey J, Chrysostomou A, Hough JH et al (1998) Circular polarization in star formation regions: implications for biomolecular homochirality. Science 281:672–674ADSCrossRefGoogle Scholar
  6. Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4:137–167ADSCrossRefGoogle Scholar
  7. Bar-Nun A, Bar-Nun N, Bauer SH et al (1970) Shock synthesis of amino acids in simulated primitive environments. Science 168:470–473ADSCrossRefGoogle Scholar
  8. Baross JA, Hoffman SE (1985) Submarine hydrothermal vents and associated gradient environment as sites for the origin and evolution of life. Orig Life Evol Biosph 15:327–345CrossRefGoogle Scholar
  9. Bonner WA (1991) The origin and amplification of biomolecular chirality. Orig Life Evol Biosph 21:59–111ADSCrossRefGoogle Scholar
  10. Brack A (2009) Impacts and origins of life. Nat Geosci 2:8–9ADSCrossRefGoogle Scholar
  11. Brack A, Spach G (1981) Enantiomer enrichment in early peptides. Orig Life 11:135–142ADSCrossRefGoogle Scholar
  12. Brack A, Spach G (1987) Search for chiral molecules and optical activity in extraterrestrial systems. Example of Titan. Biosystems 20:95–98CrossRefGoogle Scholar
  13. Brack A, Troublé M (2010) Defining life: connecting robotics and chemistry. Orig Life Evol Biosph 40:31–136CrossRefGoogle Scholar
  14. Brandenburg A, Andersen AC, Nilsson M (2005) Dissociation in a polymerization model of homochirality. Orig Life Evol Biosph 35:507–521ADSCrossRefGoogle Scholar
  15. Brinton KLF, Engrand C, Glavin DP et al (1998) A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites. Orig Life Evol Biosph 28:413–424ADSCrossRefGoogle Scholar
  16. Callahan MP, Smith KE, Cleaves JC II et al (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci U S A 108:13995–13998ADSCrossRefGoogle Scholar
  17. Catling D, Kasting JF (2007) Planetary atmospheres and life. In: Sullivan WT III, Baross JA (eds) Planets and life. Cambridge University Press, Cambridge, pp 91–116CrossRefGoogle Scholar
  18. Chang S (1993) Prebiotic synthesis in planetary environments. In: Greenberg JM, Mendoza-Gomez CX, Pirronello V (eds) The chemistry of life’s origin. Kluwer Academic, Dordrecht, pp 259–300CrossRefGoogle Scholar
  19. Cleaves HJ, Chalmers JH, Lazcano A et al (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosph 38:105–115ADSCrossRefGoogle Scholar
  20. Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955ADSCrossRefGoogle Scholar
  21. Davies PCW, Lineweaver CH (2005) Finding a second sample of life on earth. Astrobiology 5:154–163ADSCrossRefGoogle Scholar
  22. Deamer DW (1985) Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature 317:792–794ADSCrossRefGoogle Scholar
  23. Deamer DW (1998) Membrane compartments in prebiotic evolution. In: Brack A (ed) The molecular origins of life: assembling pieces of the puzzle. Cambridge University Press, Cambridge, pp 189–205CrossRefGoogle Scholar
  24. Despois D, Cottin H (2005) Comets: potential sources of prebiotic molecules. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology. Springer, Berlin, pp 289–352CrossRefGoogle Scholar
  25. Dobrica E, Engrand C, Duprat J, Gounelle M, Leroux H, Quirico E, Rouzaud J-N (2013) Connection between micrometeorites and Wild 2 particles: from Antarctic snow to cometary ices. Meteorit Planet Sci 44:1643–1661ADSCrossRefGoogle Scholar
  26. Ehrenfreund P, Charnley SB (2000) Organic molecules in the interstellar medium, comets and meteorites. Annu Rev Astron Astrophys 38:427–483ADSCrossRefGoogle Scholar
  27. Fegley B Jr, Prinn RG, Hartman H et al (1986) Chemical effects of large impacts on the earth’s primitive atmosphere. Nature 319:305–308ADSCrossRefGoogle Scholar
  28. Fletcher SP, Jagt RBC, Feringa BL (2007) An astrophysically-relevant mechanism for amino acid enantiomer enrichment. Chem Commun 25:2578–2580CrossRefGoogle Scholar
  29. Frank FC (1953) On spontaneous asymmetric synthesis. Biochim Biophys Acta 11:459–463CrossRefGoogle Scholar
  30. Glassmeir K-H, Boehnhardt H, Koschny D et al (2007) The Rosetta mission: flying towards the origin of the solar system. Space Sci Rev 128:1–21ADSCrossRefGoogle Scholar
  31. Glavin DP, Dworkin JP, Aubrey A et al (2006) Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography-time of flight-mass spectrometry. Meteorit Planet Sci 41:889–902ADSCrossRefGoogle Scholar
  32. Gleiser M (2007) Asymmetric spatiotemporal evolution of prebiotic homochirality. Orig Life Evol Biosph 37:235–251ADSCrossRefGoogle Scholar
  33. Goesmann F, Rosenbauer H, Bredehöft JH et al (2015) Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science 349:aab0689CrossRefGoogle Scholar
  34. Holm NG (1992) Marine hydrothermal systems and the origins of life. Orig Life Evol Biosph 22:1–191ADSCrossRefGoogle Scholar
  35. Holm NG, Andersson EM (1998) Organic molecules on the early earth: hydrothermal systems. In: Brack A (ed) The molecular origins of life: assembling pieces of the puzzle. Cambridge University Press, Cambridge, pp 86–99CrossRefGoogle Scholar
  36. Holm NG, Andersson EM (2005) Hydrothermal simulation experiments as a tool for studies of the origin of life on Earth and other terrestrial planets: a review. Astrobiology 5:444–460ADSCrossRefGoogle Scholar
  37. Holm NG, Charlou J-L (2001) Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic ridge. Earth Planet Sci Lett 191:1–8ADSCrossRefGoogle Scholar
  38. Israël G, Szopa C, Raulin F et al (2005) Evidence for the presence of complex organic matter in Titan’s aerosols by in situ analysis. Nature 438:796–799ADSCrossRefGoogle Scholar
  39. Johnson AP, Cleaves HJ, Dworkin JP et al (2008) The Miller volcanic spark discharge experiment. Science 322:404ADSCrossRefGoogle Scholar
  40. Joyce GF (1995) The RNA world: life before DNA and protein. Cambridge University Press, Cambridge, pp 139–151Google Scholar
  41. Kasting JF, Brown LL (1998) The early atmosphere as a source of biogenic compounds. In: Brack A (ed) The molecular origins of life: assembling pieces of the puzzle. Cambridge University Press, Cambridge, pp 35–56CrossRefGoogle Scholar
  42. Kondepudi DK, Kaufman RJ, Singh N (1990) Chiral symmetry breaking in sodium chlorate crystallization. Science 250:975–976ADSCrossRefGoogle Scholar
  43. Kurosawa K, Sugita S, Ishibashi K et al (2013) Hydrogen cyanide production due to mid-size impacts in a redox-neutral N2-rich atmosphere. Orig Life Evol Biosph 43:221–245ADSCrossRefGoogle Scholar
  44. Luisi PL (1998) About various definitions of life. Orig Life Evol Biosph 28:613–622ADSCrossRefGoogle Scholar
  45. Mac Dermott A (1995) Electroweak enantioselection and the origin of life. Orig Life Evol Biosph 25:191–199ADSCrossRefGoogle Scholar
  46. Matrajt G, Pizzarello S, Taylor S et al (2004) Concentration and variability of the AIB amino acid in polar micrometeorites: implications for the exogenous delivery of amino acids to the primitive Earth. Meteorit Planet Sci 39:1849–1858ADSCrossRefGoogle Scholar
  47. Maurette M (1998) Carbonaceous micrometeorites and the origin of life. Orig Life Evol Biosph 28:385–412ADSCrossRefGoogle Scholar
  48. Maurette M (2006) Micrometeorites and the mysteries of our origins. Springer, BerlinCrossRefGoogle Scholar
  49. Maurette M, Brack A (2006) Cometary petroleum in Hadean time? Meteorit Planet Sci 41:5247Google Scholar
  50. McKay CP, Borucki WJ (1997) Organic synthesis in experimental impact shocks. Science 276:390–392ADSCrossRefGoogle Scholar
  51. Miller SL (1953) The production of amino acids under possible primitive Earth conditions. Science 117:528–529ADSCrossRefGoogle Scholar
  52. Miller SL (1998) The endogenous synthesis of organic compounds. In: Brack A (ed) The molecular origins of life: assembling pieces of the puzzle. Cambridge University Press, Cambridge, pp 59–85CrossRefGoogle Scholar
  53. Nesvorny D, Jenniskens P, Levison HF et al (2010) Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys J 713:816–836ADSCrossRefGoogle Scholar
  54. Niemann HB, Atreya SK, Bauer SJ et al (2005) The abundances of constituents of Titans’ atmosphere from the GCMS instrument on the Huygens probe. Nature 438:779–784ADSCrossRefGoogle Scholar
  55. Nordén B, Liljenzin J-O, Tokay RK (1985) Stereoselective decarboxylation of amino acids in the solid state, with special reference to chiral discrimination in prebiotic evolution. J Mol Evol 21:364–370ADSCrossRefGoogle Scholar
  56. Ogata Y, Imai E-I, Honda H et al (2000) Hydrothermal circulation of seawater through hot vents and contribution of interface chemistry to prebiotic synthesis. Orig Life Evol Biosph 30:527–537ADSCrossRefGoogle Scholar
  57. Oparin AI (1924) Proikhozndenie Zhizni Izd. Moskowski RabochiGoogle Scholar
  58. Parker ET, Zhou M, Burton AS et al (2014) A plausible simultaneous synthesis of amino acids and simple peptides on the primordial Earth. Angew Chem Int Ed 53:8132–8136CrossRefGoogle Scholar
  59. Perry RH, Wu C, Nefliu M et al (2007) Serine sublimes with spontaneous chiral amplification. Chem Commun 10:1071–1073CrossRefGoogle Scholar
  60. Pinti DL (2005) The origin and evolution of the oceans. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology. Springer, Heidelberg, pp 83–112CrossRefGoogle Scholar
  61. Pizzarello S (2007) The chemistry that preceded life’s origin: a study guide from meteorites. Chem Biodivers 4:680–693CrossRefGoogle Scholar
  62. Pizzarello S, Cronin JR (2000) Non-racemic amino acids in the Murray and Murchison meteorites. Geochim Cosmochim Acta 64:329–338ADSCrossRefGoogle Scholar
  63. Pizzarello S, Huang Y (2005) The deuterium enrichment of individual amino acids in carbonaceous meteorites: a case for the presolar distribution of biomolecules precursors. Geochim Cosmochim Acta 69:599–605ADSCrossRefGoogle Scholar
  64. Pizzarello S, Shock E (2010) The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring Harb Perspect Biol 2:a002105CrossRefGoogle Scholar
  65. Pizzarello S, Huang Y, Becker L et al (2001) The organic content of the Tagish Lake meteorite. Science 293:2236–2239ADSCrossRefGoogle Scholar
  66. Pizzarello S, Zolensky M, Turk KA (2003) Non-racemic isovaline in the Murchison meteorite: chiral distribution and mineral association. Geochim Cosmochim Acta 67:1589–1595ADSCrossRefGoogle Scholar
  67. Pizzarello S, Schrader DL, Monroe AA et al (2012) Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution. Proc Natl Acad Sci USA 109:11949–11954ADSCrossRefGoogle Scholar
  68. Plasson R, Bersini H, Commeyras A (2004) Recycling frank: spontaneous emergence of homochirality in noncatalytic systems. Proc Natl Acad Sci USA 101:16733–16738ADSCrossRefGoogle Scholar
  69. Rikken GLJA, Raupach E (2000) Enantioselective magnetochiral photochemistry. Nature 405:932–935ADSCrossRefGoogle Scholar
  70. Rubin M, Altwegg K, Balsiger H et al (2015) Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science 348:232–235ADSCrossRefGoogle Scholar
  71. Rubinstein I, Kjaer K, Weissbuch I et al (2005) Homochiral oligopeptides generated via an asymmetric induction in racemic 2D crystallites at the air–water interface; the system ethyl/thio-ethyl esters of long-chain amphiphilic α-amino acids. Chem Commun 43:5432–5434CrossRefGoogle Scholar
  72. Ryder G (2003) Bombardment of the Hadean Earth: wholesome or deleterious? Astrobiology 3:3–6ADSCrossRefGoogle Scholar
  73. Schlesinger G, Miller SL (1983) Prebiotic syntheses in atmospheres containing CH4, CO, and CO2. I. Amino acids. J Mol Evol 19:376–382ADSCrossRefGoogle Scholar
  74. Schmitt-Kopplin P, Gabelica Z, Gougeon RD et al (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci USA 107:2763–2768ADSCrossRefGoogle Scholar
  75. Shibata T, Yamamoto J, Matsumoto N et al (1998) Amplification of a slight enantiomeric imbalance in molecules based on asymmetry autocatalysis. J Am Chem Soc 120:12157–12158CrossRefGoogle Scholar
  76. Spach G, Brack A (1988) Chemical production of optically pure systems. In: Marx G (ed) Bioastronomy. The next steps. Kluwer Academic, Dordrecht, pp 223–231CrossRefGoogle Scholar
  77. Stoks PG, Schwartz AW (1982) Basic nitrogen-heterocyclic compounds in the Murchison meteorite. Geochim Cosmochim Acta 46:309–315ADSCrossRefGoogle Scholar
  78. Tarasevych AV, Sorochinsky AE, Kukhar VP et al (2013) Partial sublimation of enantioenriched amino acids at low temperature. Is it coming from the formation of a euatmotic composition1 of the gaseous phase? J Org Chem 78:10530–10533CrossRefGoogle Scholar
  79. Tarasevych AV, Sorochinsky AE, Kukhar VP et al (2015) High temperature sublimation of a-amino acids: a realistic prebiotic process leading to large enantiomeric excess. Chem Commun 51:7054–7057CrossRefGoogle Scholar
  80. Tian F, Toon OB, Pavlov AA et al (2005) A hydrogen-rich early atmosphere. Science 308:1014–1017ADSCrossRefGoogle Scholar
  81. Weissbuch I, Addadi L, Leiserowitz L et al (1988) Total asymmetric transformations at interfaces with centrosymmetric crystals: role of hydrophobic and kinetic effects in the crystallization of the system glycine/α-amino acids. J Am Chem Soc 110:561–567CrossRefGoogle Scholar
  82. Weissbuch I, Berfeld M, Bouwman W, Kjaer K, Als-Nielsen J, Lahav M, Leiserowitz L (1997) Separation of enantiomers and racemate formation in two-dimensional crystals at the water surface from racemic-amino acid amphiphiles: design and structure. J Am Chem Soc 119:933–942CrossRefGoogle Scholar
  83. Westall F, Foucher F, Bost N et al (2015) Biosignatures on Mars: what, where, and how? Implications for the search for Martian Life. Astrobiology 15:998–1029ADSCrossRefGoogle Scholar
  84. Yabuta H, William LB, Cody GD et al (2007) The insoluble carbonaceous material of CM chondrites: a possible source of discrete compounds under hydrothermal conditions. Meteorit Planet Sci 42:37–48ADSCrossRefGoogle Scholar
  85. Zepik H, Shavit E, Tang M et al (2002) Chiral amplification of oligopeptides in two-dimensional crystalline self-assemblies on water. Science 295:1266–1269ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre de Biophysique Moléculaire, CNRSOrléansFrance

Personalised recommendations