Skip to main content

Proliferative Diabetic Retinopathy

  • Chapter
  • First Online:
Book cover Clinical Strategies in the Management of Diabetic Retinopathy

Abstract

Proliferative diabetic retinopathy is the most severe and aggressive form of diabetic retinopathy. It is characterized by a fibrovascular proliferation that arises from the disk or from the inner retinal vasculature, as a response to chronic retinal hypoxia. Panretinal photocoagulation (PRP) is the recommended treatment, and a 50% reduction of severe visual loss has been described in the high-risk retinopathy group. Nevertheless, visual field loss, worsening of diabetic macular edema, and visual impairment have been reported as possible side effects. The injection of vascular endothelium growth factor (VEGF) inhibitors has shown some favorable effects in the regression of neovascularization, even though the benefits are limited and a high rate of recurrence was found in the short term. Thus, the combination therapy of anti-VEGF injection and PRP has been considered a valuable treatment option to improve the results in selected cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klein R, Klein BE, Moss SE, et al. The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol Chic Ill. 1960 1984;102:520–6.

    Article  Google Scholar 

  2. Klein R, Klein BE, Moss SE, et al. The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol Chic Ill. 1960 1984;102:527–32.

    Article  Google Scholar 

  3. Dobree JH. Proliferative diabetic retinopathy: evolution of the retinal lesions. Br J Ophthalmol. 1964;48:637–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garner A. Histopathology of diabetic retinopathy in man. Eye Lond Engl. 1993;7(Pt 2):250–3. https://doi.org/10.1038/eye.1993.58.

    Article  Google Scholar 

  5. Shimizu K, Kobayashi Y, Muraoka K. Midperipheral fundus involvement in diabetic retinopathy. Ophthalmology. 1981;88:601–12.

    Article  CAS  PubMed  Google Scholar 

  6. Michelson I. The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal diseases. Trans Ophthalmol Soc UK. 1948;68:137–80.

    Google Scholar 

  7. Wise GN. Retinal neovascularization. Trans Am Ophthalmol Soc. 1956;54:729–826.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Patz A. Clinical and experimental studies on retinal neovascularization. XXXIX Edward Jackson Memorial Lecture. Am J Ophthalmol. 1982;94:715–43.

    Article  CAS  PubMed  Google Scholar 

  9. Cho H, Alwassia AA, Regiatieri CV, et al. Retinal neovascularization secondary to proliferative diabetic retinopathy characterized by spectral domain optical coherence tomography. Retina Phila Pa. 2013;33:542–7. https://doi.org/10.1097/IAE.0b013e3182753b6f.

    Article  Google Scholar 

  10. Jansson RW, Frøystein T, Krohn J. Topographical distribution of retinal and optic disc neovascularization in early stages of proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2012;53:8246–52. https://doi.org/10.1167/iovs.12-10918.

    Article  PubMed  Google Scholar 

  11. Davis MD. Vitreous contraction in proliferative diabetic retinopathy. Arch Ophthalmol Chic Ill. 1960 1965;74:741–51.

    Article  Google Scholar 

  12. Kampik A, Kenyon KR, Michels RG, et al. Epiretinal and vitreous membranes. Comparative study of 56 cases. Arch Ophthalmol Chic Ill. 1960 1981;99:1445–54.

    Article  Google Scholar 

  13. Nork TM, Wallow IH, Sramek SJ, et al. Müller’s cell involvement in proliferative diabetic retinopathy. Arch Ophthalmol Chic Ill. 1960 1987;105:1424–9.

    Article  Google Scholar 

  14. Wallow IH, Geldner PS. Endothelial fenestrae in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 1980;19:1176–83.

    CAS  PubMed  Google Scholar 

  15. Taniguchi Y. Ultrastructure of newly formed blood vessels in diabetic retinopathy. Jpn J Ophthalmol. 1976;20:19–31.

    Google Scholar 

  16. Diabetic retinopathy study. Report number 6. Design, methods, and baseline results. Report number 7. A modification of the airlie house classification of diabetic retinopathy. Prepared by the diabetic retinopathy. Invest Ophthalmol Vis Sci. 1981;21:1–226.

    Google Scholar 

  17. Wilkinson CP, Ferris FL, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–82. https://doi.org/10.1016/S0161-6420(03)00475-5.

    Article  CAS  PubMed  Google Scholar 

  18. Ohira A, de Juan E. Characterization of glial involvement in proliferative diabetic retinopathy. Ophthalmol J Int Ophtalmol Int J Ophthalmol Z Augenheilkd. 1990;201:187–95. https://doi.org/10.1159/000310150.

    Article  CAS  Google Scholar 

  19. Di Bernardo C, Schachat A, Fekrat S. Ophthalmic ultrasound: a diagnostic atlas. New York: Thieme; 1998.

    Google Scholar 

  20. Schwatz SD, Alexander R, Hiscott P, et al. Recognition of vitreoschisis in proliferative diabetic retinopathy. A useful landmark in vitrectomy for diabetic traction retinal detachment. Ophthalmology. 1996;103:323–8.

    Article  CAS  PubMed  Google Scholar 

  21. Chu TG, Lopez PF, Cano MR, et al. Posterior vitreoschisis. An echographic finding in proliferative diabetic retinopathy. Ophthalmology. 1996;103:315–22.

    Article  CAS  PubMed  Google Scholar 

  22. Restori M, McLeod D. Ultrasound in pre-vitrectomy assessment. Trans Ophthalmol Soc U K. 1977;97:232–4.

    CAS  PubMed  Google Scholar 

  23. Arzabe CW, Akiba J, Jalkh AE, et al. Comparative study of vitreoretinal relationships using biomicroscopy and ultrasound. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1991;229:66–8.

    Article  CAS  Google Scholar 

  24. Kaiser PK, Riemann CD, Sears JE, et al. Macular traction detachment and diabetic macular edema associated with posterior hyaloidal traction. Am J Ophthalmol. 2001;131:44–9.

    Article  CAS  PubMed  Google Scholar 

  25. Villegas V, Flynn HJ. Diabetic retinopathy. In: Optical coherence tomography of ocular disease. Thorofare: Slack Incorporated; 2004. p. 158–214.

    Google Scholar 

  26. Soman M, Ganekal S, Nair U, et al. Effect of panretinal photocoagulation on macular morphology and thickness in eyes with proliferative diabetic retinopathy without clinically significant macular edema. Clin Ophthalmol Auckl NZ. 2012;6:2013–7. https://doi.org/10.2147/OPTH.S37340.

    Article  Google Scholar 

  27. Shah VA, Brown JS, Mahmoud TH. Correlation of outer retinal microstucture and foveal thickness with visual acuity after pars plana vitrectomy for complications of proliferative diabetic retinopathy. Retina Phila Pa. 2012;32:1775–80. https://doi.org/10.1097/IAE.0b013e318255068a.

    Article  Google Scholar 

  28. Lee SB, Kwag JY, Lee HJ, et al. The longitudinal changes of retinal nerve fiber layer thickness after panretinal photocoagulation in diabetic retinopathy patients. Retina Phila Pa. 2013;33:188–93. https://doi.org/10.1097/IAE.0b013e318261a710.

    Article  CAS  Google Scholar 

  29. Esmaeelpour M, Brunner S, Ansari-Shahrezaei S, et al. Choroidal thinning in diabetes type 1 detected by 3-dimensional 1060 nm optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:6803–9. https://doi.org/10.1167/iovs.12-10314.

    Article  PubMed  Google Scholar 

  30. Vujosevic S, Martini F, Cavarzeran F, et al. Macular and peripapillary choroidal thickness in diabetic patients. Retina Phila Pa. 2012;32:1781–90. https://doi.org/10.1097/IAE.0b013e31825db73d.

    Article  Google Scholar 

  31. Roohipoor R, Sharifian E, Ghassemi F, et al. Choroidal thickness changes in proliferative diabetic retinopathy treated with panretinal photocoagulation versus panretinal photocoagulation with intravitreal bevacizumab. Retina Phila Pa. 2016;36:1997–2005. https://doi.org/10.1097/IAE.0000000000001027.

    Article  CAS  Google Scholar 

  32. Akiyama H, Li D, Shimoda Y, et al. Observation of neovascularization of the disc associated with proliferative diabetic retinopathy using OCT angiography. Jpn J Ophthalmol. 2018;62:286–91. https://doi.org/10.1007/s10384-018-0571-z.

    Article  PubMed  Google Scholar 

  33. Sandhu HS, Eladawi N, Elmogy M, et al. Automated diabetic retinopathy detection using optical coherence tomography angiography: a pilot study. Br J Ophthalmol. 2018; https://doi.org/10.1136/bjophthalmol-2017-311489.

  34. Lange J, Hadziahmetovic M, Zhang J, et al. Region-specific ischemia, neovascularization and macular oedema in treatment-naïve proliferative diabetic retinopathy. Clin Experiment Ophthalmol. 2018; https://doi.org/10.1111/ceo.13168.

  35. Photocoagulation treatment of proliferative diabetic retinopathy: relationship of adverse treatment effects to retinopathy severity. Diabetic retinopathy study report no. 5. Dev Ophthalmol. 1981;2:248–61.

    Google Scholar 

  36. Nagpal M, Marlecha S, Nagpal K. Comparison of laser photocoagulation for diabetic retinopathy using 532-nm standard laser versus multispot pattern scan laser. Retina Phila Pa. 2010;30:452–8. https://doi.org/10.1097/IAE.0b013e3181c70127.

    Article  Google Scholar 

  37. Lövestam-Adrian M, Andréasson S, Ponjavic V. Macular function assessed with mfERG before and after panretinal photocoagulation in patients with proliferative diabetic retinopathy. Doc Ophthalmol Adv Ophthalmol. 2004;109:115–21.

    Article  Google Scholar 

  38. Messias A, Ramos Filho JA, Messias K, et al. Electroretinographic findings associated with panretinal photocoagulation (PRP) versus PRP plus intravitreal ranibizumab treatment for high-risk proliferative diabetic retinopathy. Doc Ophthalmol Adv Ophthalmol. 2012;124:225–36. https://doi.org/10.1007/s10633-012-9322-5.

    Article  Google Scholar 

  39. Unoki N, Nishijima K, Sakamoto A, et al. Retinal sensitivity loss and structural disturbance in areas of capillary nonperfusion of eyes with diabetic retinopathy. Am J Ophthalmol. 2007;144:755–60. https://doi.org/10.1016/j.ajo.2007.07.011.

    Article  PubMed  Google Scholar 

  40. Muqit MMK, Gray JCB, Marcellino GR, et al. In vivo laser-tissue interactions and healing responses from 20- vs 100-millisecond pulse Pascal photocoagulation burns. Arch Ophthalmol Chic Ill. 1960 2010;128:448–55. https://doi.org/10.1001/archophthalmol.2010.36.

    Article  Google Scholar 

  41. Mendrinos E, Mangioris G, Papadopoulou DN, et al. Retinal vessel analyzer measurements of the effect of panretinal photocoagulation on the retinal arteriolar diameter in diabetic retinopathy. Retina Phila Pa. 2010;30:555–61. https://doi.org/10.1097/IAE.0b013e3181bd2f79.

    Article  Google Scholar 

  42. Glaser BM. Extracellular modulating factors and the control of intraocular neovascularization. An overview. Arch Ophthalmol Chic Ill. 1960 1988;106:603–7.

    Article  Google Scholar 

  43. Glaser BM, Campochiaro PA, Davis JL, et al. Retinal pigment epithelial cells release an inhibitor of neovascularization. Arch Ophthalmol Chic Ill. 1960 1985;103:1870–5.

    Article  Google Scholar 

  44. Patz A. Retinal neovascularisation: early contributions of professor Michaelson and recent observations. Br J Ophthalmol. 1984;68:42–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Landers MB, Stefansson E, Wolbarsht ML. Panretinal photocoagulation and retinal oxygenation. Retina Phila Pa. 1982;2:167–75.

    Article  Google Scholar 

  46. Photocoagulation treatment of proliferative diabetic retinopathy: the second report of diabetic retinopathy study findings. Ophthalmology. 1978;85:82–106.

    Google Scholar 

  47. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of diabetic retinopathy study (DRS) findings, DRS report number 8. The Diabetic Retinopathy Study Research Group. Ophthalmology. 1981;88:583–600.

    Google Scholar 

  48. Early treatment diabetic retinopathy study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology. 1991;98:741–56.

    Google Scholar 

  49. Preliminary report on effects of photocoagulation therapy. The Diabetic Retinopathy Study Research Group. Am J Ophthalmol. 1976;81:383–96.

    Google Scholar 

  50. Four risk factors for severe visual loss in diabetic retinopathy. The third report from the diabetic retinopathy study. The Diabetic Retinopathy Study Research Group. Arch Ophthalmol Chic Ill. 1960 1979;97:654–5.

    Google Scholar 

  51. Effects of aspirin treatment on diabetic retinopathy. ETDRS report number 8. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98:757–65.

    Google Scholar 

  52. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98:766–85.

    Google Scholar 

  53. Ferris F. Early photocoagulation in patients with either type I or type II diabetes. Trans Am Ophthalmol Soc. 1996;94:505–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Diabetic retinopathy. American Academy of Ophthalmology Retina Panel (2008) Preferred practice pattern® guidelines. www.aao.org/ppp. 2008.

  55. Techniques for scatter and local photocoagulation treatment of diabetic retinopathy: Early Treatment Diabetic Retinopathy Study Report no. 3. The Early Treatment Diabetic Retinopathy Study Research Group. Int Ophthalmol Clin. 1987;27:254–64.

    Google Scholar 

  56. Doft BH, Blankenship GW. Single versus multiple treatment sessions of argon laser panretinal photocoagulation for proliferative diabetic retinopathy. Ophthalmology. 1982;89:772–9.

    Article  CAS  PubMed  Google Scholar 

  57. Ferris FL, Podgor MJ, Davis MD. Macular edema in diabetic retinopathy study patients. Diabetic retinopathy study report number 12. Ophthalmology. 1987;94:754–60.

    Article  PubMed  Google Scholar 

  58. Bandello F, Polito A, Pognuz DR, et al. Triamcinolone as adjunctive treatment to laser panretinal photocoagulation for proliferative diabetic retinopathy. Arch Ophthalmol Chic Ill. 2006;124:643–50. https://doi.org/10.1001/archopht.124.5.643.

    Article  CAS  Google Scholar 

  59. Blumenkranz MS, Yellachich D, Andersen DE, et al. Semiautomated patterned scanning laser for retinal photocoagulation. Retina Phila Pa. 2006;26:370–6.

    Article  Google Scholar 

  60. Schuele G, Rumohr M, Huettmann G, et al. RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen. Invest Ophthalmol Vis Sci. 2005;46:714–9. https://doi.org/10.1167/iovs.04-0136.

    Article  PubMed  Google Scholar 

  61. Sheth S, Lanzetta P, Veritti D, et al. Experience with the Pascal® photocoagulator: an analysis of over 1,200 laser procedures with regard to parameter refinement. Indian J Ophthalmol. 2011;59:87–91. https://doi.org/10.4103/0301-4738.77007.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chappelow AV, Tan K, Waheed NK, et al. Panretinal photocoagulation for proliferative diabetic retinopathy: pattern scan laser versus argon laser. Am J Ophthalmol. 2012;153:137–42.e2. https://doi.org/10.1016/j.ajo.2011.05.035.

    Article  PubMed  Google Scholar 

  63. Muqit MMK, Marcellino GR, Henson DB, et al. Single-session vs multiple-session pattern scanning laser panretinal photocoagulation in proliferative diabetic retinopathy: the Manchester Pascal study. Arch Ophthalmol Chic Ill. 1960 2010;128:525–33. https://doi.org/10.1001/archophthalmol.2010.60.

    Article  Google Scholar 

  64. Muraly P, Limbad P, Srinivasan K, et al. Single session of Pascal versus multiple sessions of conventional laser for panretinal photocoagulation in proliferative diabetic retinopathy: a comparitive study. Retina Phila Pa. 2011;31:1359–65. https://doi.org/10.1097/IAE.0b013e318203c140.

    Article  Google Scholar 

  65. Kernt M, Cheuteu R, Vounotrypidis E, et al. Focal and panretinal photocoagulation with a navigated laser (NAVILAS®). Acta Ophthalmol. 2011;89:e662–4. https://doi.org/10.1111/j.1755-3768.2010.02017.x.

    Article  PubMed  Google Scholar 

  66. Chhablani J, Mathai A, Rani P, et al. Comparison of conventional pattern and novel navigated panretinal photocoagulation in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2014;55:3432–8. https://doi.org/10.1167/iovs.14-13936.

    Article  PubMed  Google Scholar 

  67. Bandello F, Pognuz DR, Pirracchio A, et al. Intravitreal triamcinolone acetonide for florid proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2004;242:1024–7. https://doi.org/10.1007/s00417-004-0911-1.

    Article  CAS  Google Scholar 

  68. Jonas JB, Kreissig I, Degenring R. Intravitreal triamcinolone acetonide for treatment of intraocular proliferative, exudative, and neovascular diseases. Prog Retin Eye Res. 2005;24:587–611. https://doi.org/10.1016/j.preteyeres.2005.01.004.

    Article  CAS  PubMed  Google Scholar 

  69. Fischer S, Renz D, Schaper W, et al. In vitro effects of dexamethasone on hypoxia-induced hyperpermeability and expression of vascular endothelial growth factor. Eur J Pharmacol. 2001;411:231–43.

    Article  CAS  PubMed  Google Scholar 

  70. Nonaka A, Kiryu J, Tsujikawa A, et al. Inflammatory response after scatter laser photocoagulation in nonphotocoagulated retina. Invest Ophthalmol Vis Sci. 2002;43:1204–9.

    PubMed  Google Scholar 

  71. Wilson CA, Berkowitz BA, Sato Y, et al. Treatment with intravitreal steroid reduces blood-retinal barrier breakdown due to retinal photocoagulation. Arch Ophthalmol Chic Ill. 1960 1992;110:1155–9.

    Article  Google Scholar 

  72. Mirshahi A, Shenazandi H, Lashay A, et al. Intravitreal triamcinolone as an adjunct to standard laser therapy in coexisting high-risk proliferative diabetic retinopathy and clinically significant macular edema. Retina Phila Pa. 2010;30:254–9. https://doi.org/10.1097/IAE.0b013e3181b4f125.

    Article  Google Scholar 

  73. Diabetic Retinopathy Clinical Research Network, Googe J, Brucker AJ, et al. Randomized trial evaluating short-term effects of intravitreal ranibizumab or triamcinolone acetonide on macular edema after focal/grid laser for diabetic macular edema in eyes also receiving panretinal photocoagulation. Retina Phila Pa. 2011;31:1009–27. https://doi.org/10.1097/IAE.0b013e318217d739.

    Article  Google Scholar 

  74. Querques L, Parravano M, Sacconi R, et al. Ischemic index changes in diabetic retinopathy after intravitreal dexamethasone implant using ultra-widefield fluorescein angiography: a pilot study. Acta Diabetol. 2017;54:769–73. https://doi.org/10.1007/s00592-017-1010-1.

    Article  CAS  PubMed  Google Scholar 

  75. Iglicki M, Zur D, Busch C, et al. Progression of diabetic retinopathy severity after treatment with dexamethasone implant: a 24-month cohort study the “DR-Pro-DEX Study.”. Acta Diabetol. 2018;55:541–7. https://doi.org/10.1007/s00592-018-1117-z.

    Article  CAS  PubMed  Google Scholar 

  76. Adamis AP, Miller JW, Bernal MT, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol. 1994;118:445–50.

    Article  CAS  PubMed  Google Scholar 

  77. Adamis AP, Shima DT, Tolentino MJ, et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol Chic Ill. 1960 1996;114:66–71.

    Article  Google Scholar 

  78. Adamis AP, Altaweel M, Bressler NM, et al. Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology. 2006;113:23–8. https://doi.org/10.1016/j.ophtha.2005.10.012.

    Article  PubMed  Google Scholar 

  79. Avery RL. Regression of retinal and iris neovascularization after intravitreal bevacizumab (Avastin) treatment. Retina Phila Pa. 2006;26:352–4.

    Article  Google Scholar 

  80. Jorge R, Costa RA, Calucci D, et al. Intravitreal bevacizumab (Avastin) for persistent new vessels in diabetic retinopathy (IBEPE study). Retina Phila Pa. 2006;26:1006–13. https://doi.org/10.1097/01.iae.0000246884.76018.63.

    Article  Google Scholar 

  81. Martinez-Zapata MJ, Martí-Carvajal AJ, Solà I, et al. Anti-vascular endothelial growth factor for proliferative diabetic retinopathy. Cochrane Database Syst Rev. 2014;11:CD008721. https://doi.org/10.1002/14651858.CD008721.pub2.

    Article  Google Scholar 

  82. Filho JAR, Messias A, Almeida FPP, et al. Panretinal photocoagulation (PRP) versus PRP plus intravitreal ranibizumab for high-risk proliferative diabetic retinopathy. Acta Ophthalmol. 2011;89:e567–72. https://doi.org/10.1111/j.1755-3768.2011.02184.x.

    Article  CAS  PubMed  Google Scholar 

  83. Writing Committee for the Diabetic Retinopathy Clinical Research Network, Gross JG, Glassman AR, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA. 2015;314:2137–46. https://doi.org/10.1001/jama.2015.15217.

    Article  CAS  Google Scholar 

  84. Hutton DW, Stein JD, Bressler NM, et al. Cost-effectiveness of Intravitreous ranibizumab compared with panretinal photocoagulation for proliferative diabetic retinopathy: secondary analysis from a diabetic retinopathy clinical research network randomized clinical trial. JAMA Ophthalmol. 2017;135:576–84. https://doi.org/10.1001/jamaophthalmol.2017.0837.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Figueira J, Fletcher E, Massin P, et al. Ranibizumab plus panretinal photocoagulation versus panretinal photocoagulation alone for high-risk proliferative diabetic retinopathy (PROTEUS study). Ophthalmology. 2018;125:691–700. https://doi.org/10.1016/j.ophtha.2017.12.008.

    Article  PubMed  Google Scholar 

  86. Sivaprasad S, Prevost AT, Vasconcelos JC, et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet Lond Engl. 2017;389:2193–203. https://doi.org/10.1016/S0140-6736(17)31193-5.

    Article  CAS  Google Scholar 

  87. Jeon S, Lee WK. Intravitreal bevacizumab increases intraocular interleukin-6 levels at 1 day after injection in patients with proliferative diabetic retinopathy. Cytokine. 2012;60:535–9. https://doi.org/10.1016/j.cyto.2012.07.005.

    Article  CAS  PubMed  Google Scholar 

  88. Ernst BJ, García-Aguirre G, Oliver SCN, et al. Intravitreal bevacizumab versus panretinal photocoagulation for treatment-naïve proliferative and severe nonproliferative diabetic retinopathy. Acta Ophthalmol. 2012;90:e573–4. https://doi.org/10.1111/j.1755-3768.2011.02364.x.

    Article  PubMed  Google Scholar 

  89. Arevalo JF, Maia M, Flynn HW, et al. Tractional retinal detachment following intravitreal bevacizumab (Avastin) in patients with severe proliferative diabetic retinopathy. Br J Ophthalmol. 2008;92:213–6. https://doi.org/10.1136/bjo.2007.127142.

    Article  CAS  PubMed  Google Scholar 

  90. El-Sabagh HA, Abdelghaffar W, Labib AM, et al. Preoperative intravitreal bevacizumab use as an adjuvant to diabetic vitrectomy: histopathologic findings and clinical implications. Ophthalmology. 2011;118:636–41. https://doi.org/10.1016/j.ophtha.2010.08.038.

    Article  PubMed  Google Scholar 

  91. Mirshahi A, Roohipoor R, Lashay A, et al. Bevacizumab-augmented retinal laser photocoagulation in proliferative diabetic retinopathy: a randomized double-masked clinical trial. Eur J Ophthalmol. 2008;18:263–9.

    Article  CAS  PubMed  Google Scholar 

  92. Cintra LP, Costa RA, Ribeiro JAS, et al. Intravitreal bevacizumab (Avastin) for persistent new vessels in diabetic retinopathy (IBEPE study): 1-year results. Retina Phila Pa. 2013;33:1109–16. https://doi.org/10.1097/IAE.0b013e31827b63f3.

    Article  CAS  Google Scholar 

  93. Huang Y-H, Yeh P-T, Chen M-S, et al. Intravitreal bevacizumab and panretinal photocoagulation for proliferative diabetic retinopathy associated with vitreous hemorrhage. Retina Phila Pa. 2009;29:1134–40. https://doi.org/10.1097/IAE.0b013e3181b094b7.

    Article  Google Scholar 

  94. Yang C-S, Hung K-C, Huang Y-M, et al. Intravitreal bevacizumab (Avastin) and panretinal photocoagulation in the treatment of high-risk proliferative diabetic retinopathy. J Ocul Pharmacol Ther Off J Assoc Ocul Pharmacol Ther. 2013;29:550–5. https://doi.org/10.1089/jop.2012.0202.

    Article  CAS  Google Scholar 

  95. Nakao S, Ishikawa K, Yoshida S, et al. Altered vascular microenvironment by bevacizumab in diabetic fibrovascular membrane. Retina Phila Pa. 2013;33:957–63. https://doi.org/10.1097/IAE.0b013e3182753b41.

    Article  CAS  Google Scholar 

  96. Cunningham ET, Adamis AP, Altaweel M, et al. A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology. 2005;112:1747–57. https://doi.org/10.1016/j.ophtha.2005.06.007.

    Article  PubMed  Google Scholar 

  97. González VH, Giuliari GP, Banda RM, et al. Intravitreal injection of pegaptanib sodium for proliferative diabetic retinopathy. Br J Ophthalmol. 2009;93:1474–8. https://doi.org/10.1136/bjo.2008.155663.

    Article  PubMed  Google Scholar 

  98. Hornan D, Edmeades N, Krishnan R, et al. Use of pegaptanib for recurrent and non-clearing vitreous haemorrhage in proliferative diabetic retinopathy. Eye Lond Engl. 2010;24:1315–9. https://doi.org/10.1038/eye.2010.14.

    Article  CAS  Google Scholar 

  99. Early vitrectomy for severe vitreous hemorrhage in diabetic retinopathy. Two-year results of a randomized trial. Diabetic Retinopathy Vitrectomy Study report 2. The Diabetic Retinopathy Vitrectomy Study Research Group. Arch Ophthalmol Chic Ill. 1960 1985;103:1644–52.

    Google Scholar 

  100. Early vitrectomy for severe proliferative diabetic retinopathy in eyes with useful vision. Clinical application of results of a randomized trial--Diabetic Retinopathy Vitrectomy Study Report 4. The Diabetic Retinopathy Vitrectomy Study Research Group. Ophthalmology. 1988;95:1321–34.

    Google Scholar 

  101. Early vitrectomy for severe proliferative diabetic retinopathy in eyes with useful vision. Results of a randomized trial--Diabetic Retinopathy Vitrectomy Study Report 3. The Diabetic Retinopathy Vitrectomy Study Research Group. Ophthalmology. 1988;95:1307–20.

    Google Scholar 

  102. Early vitrectomy for severe vitreous hemorrhage in diabetic retinopathy. Four-year results of a randomized trial: Diabetic retinopathy vitrectomy study report 5. Arch Ophthalmol Chic Ill. 1960 1990;108:958–64.

    Google Scholar 

  103. Codenotti M, Iuliano L, Maestranzi G. Surgical Management and Techniques. Dev Ophthalmol. 2017;60:143–59. https://doi.org/10.1159/000459702.

    Article  PubMed  Google Scholar 

  104. Avery RL, Pearlman J, Pieramici DJ, et al. Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology. 2006;113:1695.e1–15. https://doi.org/10.1016/j.ophtha.2006.05.064.

    Article  Google Scholar 

  105. Smith JM, Steel DHW. Anti-vascular endothelial growth factor for prevention of postoperative vitreous cavity haemorrhage after vitrectomy for proliferative diabetic retinopathy. Cochrane Database Syst Rev. 2015;8:CD008214. https://doi.org/10.1002/14651858.CD008214.pub3.

    Article  Google Scholar 

  106. Simunovic MP, Maberley DAL. Anti-vascular endothelial growth factor therapy for proliferative diabetic retinopathy: a systematic review and meta-analysis. Retina Phila Pa. 2015;35:1931–42. https://doi.org/10.1097/IAE.0000000000000723.

    Article  CAS  Google Scholar 

  107. Charles S, Flinn CE. The natural history of diabetic extramacular traction retinal detachment. Arch Ophthalmol Chic Ill. 1960 1981;99:66–8.

    Article  Google Scholar 

  108. Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis of diabetic retinopathy. Semin Immunopathol. 2008;30:65–84. https://doi.org/10.1007/s00281-008-0111-x.

    Article  CAS  PubMed  Google Scholar 

  109. Esser P, Bresgen M, Fischbach R, et al. Intercellular adhesion molecule-1 levels in plasma and vitreous from patients with vitreoretinal disorders. Ger J Ophthalmol. 1995;4:269–74.

    CAS  PubMed  Google Scholar 

  110. Adamiec-Mroczek J, Oficjalska-Młyńczak J. Assessment of selected adhesion molecule and proinflammatory cytokine levels in the vitreous body of patients with type 2 diabetes--role of the inflammatory-immune process in the pathogenesis of proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2008;246:1665–70. https://doi.org/10.1007/s00417-008-0868-6.

    Article  CAS  Google Scholar 

  111. Intravitreal bevacizumab for proliferative diabetic retinopathy [ClinicalTrials.gov Identifier: NCT01724385] US National Institutes of Health, ClinicalTrials.gov. http://www.clinicaltrials.gov.

  112. Prospective, randomized, multicenter, open label, phase II study to access efficacy and safety of Lucentis® monotherapy compared with Lucentis® plus panretinal photocoagulation (PRP) and PRP in the treatment of patients with high risk proliferative diabetic retinopathy [ClinicalTrials.gov Identifier: NCT01280929] US National Institutes of Health, ClinicalTrials.gov [online]. http://www.clinicaltrials.gov.

  113. Multicenter 12 months clinical study to evaluate efficacy and safety of ranibizumab alone or in combination with laser photocoagulation vs. laser photocoagulation alone in proliferative diabetic retinopathy [ClinicalTrials.gov Identifier: NCT01594281] US National Institutes of Health, ClinicalTrials.gov. http://www.clinicaltrials.gov.

  114. Prospective, randomized, open label, Phase II study to assess efficacy and safety of Macugen® (pegaptanib 0.3 mg intravitreal injections) plus panretinal photocoagulation (PRP) and PRP (monotherapy) in the treatment of patients with high risk proliferative diabetic retinopathy [ClinicalTrials.gov identifier: NCT01281098] US National Institutes of Health, ClinicalTrials.gov. http://www.clinicaltrials.gov.

  115. Treatment with intravitreal aflibercept injection for proliferative diabetic retinopathy, The A.C.T study (ACT) [ClinicalTrials.gov Identifier: NCT01813773] US National Institutes of Health, ClinicalTrialsgov : http://www.clinicaltrials.gov.

  116. Joussen AM, Poulaki V, Mitsiades N, et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J Off Publ Fed Am Soc Exp Biol. 2002;16:438–40. https://doi.org/10.1096/fj.01-0707fje.

    Article  CAS  Google Scholar 

  117. Hirano Y, Sakurai E, Matsubara A, et al. Suppression of ICAM-1 in retinal and choroidal endothelial cells by plasmid small-interfering RNAs in vivo. Invest Ophthalmol Vis Sci. 2010;51:508–15. https://doi.org/10.1167/iovs.09-3457.

    Article  PubMed  Google Scholar 

  118. Arita R, Hata Y, Nakao S, et al. Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage. Diabetes. 2009;58:215–26. https://doi.org/10.2337/db08-0762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Elner SG, Elner VM, Bian ZM, et al. Human retinal pigment epithelial cell interleukin-8 and monocyte chemotactic protein-1 modulation by T-lymphocyte products. Invest Ophthalmol Vis Sci. 1997;38:446–55.

    CAS  PubMed  Google Scholar 

  120. Limb GA, Hollifield RD, Webster L, et al. Soluble TNF receptors in vitreoretinal proliferative disease. Invest Ophthalmol Vis Sci. 2001;42:1586–91.

    CAS  PubMed  Google Scholar 

  121. Tashimo A, Mitamura Y, Nagai S, et al. Aqueous levels of macrophage migration inhibitory factor and monocyte chemotactic protein-1 in patients with diabetic retinopathy. Diabet Med J Br Diabet Assoc. 2004;21:1292–7. https://doi.org/10.1111/j.1464-5491.2004.01334.x.

    Article  CAS  Google Scholar 

  122. Parks WC, Wilson CL, López-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. 2004;4:617–29. https://doi.org/10.1038/nri1418.

    Article  CAS  PubMed  Google Scholar 

  123. Resveratrol mitigates rat retinal ischemic injury: the roles of matrix metalloproteinase-9, inducible nitric oxide, and heme oxygenase-1. - PubMed - NCBI. 2018. https://www.ncbi.nlm.nih.gov/pubmed/?term=1.%09J+Ocul+Pharmacol+Ther+29%3A33%E2%80%9340. Accessed 25 Mar 2018.

  124. Stahel M, Becker M, Graf N, et al. Systemic interleukin 1β inhibition in proliferative diabetic retinopathy: a prospective open-label study using canakinumab. Retina Phila Pa. 2016;36:385–91. https://doi.org/10.1097/IAE.0000000000000701.

    Article  CAS  Google Scholar 

  125. Campochiaro PA, Brown DM, Pearson A, et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology. 2011;118:626–35.e2. https://doi.org/10.1016/j.ophtha.2010.12.028.

    Article  PubMed  Google Scholar 

  126. Bandello F, Gass JD, Lattanzio R, Brancato R. Spontaneous regression of neovascularization at the disk and elsewhere in diabetic retinopathy. Am J Ophthalmol. 1996;122:494–501.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Iuliano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bandello, F., Iuliano, L., Fogliato, G., Zucchiatti, I., Lattanzio, R., Maestranzi, G. (2019). Proliferative Diabetic Retinopathy. In: Bandello, F., Zarbin, M., Lattanzio, R., Zucchiatti, I. (eds) Clinical Strategies in the Management of Diabetic Retinopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-96157-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96157-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96156-9

  • Online ISBN: 978-3-319-96157-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics