Skip to main content

Lovász-Schrijver PSD-Operator on Some Graph Classes Defined by Clique Cutsets

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10856))

Included in the following conference series:

Abstract

This work is devoted to the study of the Lovász-Schrijver PSD-operator \(LS_+\) applied to the edge relaxation \(\mathrm{ESTAB}(G)\) of the stable set polytope \(\mathrm{STAB}(G)\) of a graph G. In order to characterize the graphs G for which \(\mathrm{STAB}(G)\) is achieved in one iteration of the \(LS_+\)-operator, called \(LS_+\)-perfect graphs, an according conjecture has been recently formulated (\(LS_+\)-Perfect Graph Conjecture). Here we study two graph classes defined by clique cutsets (pseudothreshold graphs and graphs without certain Truemper configurations). We completely describe the facets of the stable set polytope for such graphs, which enables us to show that one class is a subclass of \(LS_+\)-perfect graphs, and to verify the \(LS_+\)-Perfect Graph Conjecture for the other class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An anticomponent is an inclusion-wise maximal subgraph \(G'\) of G such that \(\overline{G}'\) is a component of \(\overline{G}\).

References

  1. Bianchi, S., Escalante, M., Nasini, G., Tunçel, L.: Lovász-Schrijver PSD-operator and a superclass of near-perfect graphs. Electron. Notes Discrete Math. 44, 339–344 (2013)

    Article  Google Scholar 

  2. Bianchi, S., Escalante, M., Nasini, G., Wagler, A.: Lovász-Schrijver PSD-operator on claw-free graphs. In: Cerulli, R., Fujishige, S., Mahjoub, A.R. (eds.) ISCO 2016. LNCS, vol. 9849, pp. 59–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45587-7_6

    Chapter  Google Scholar 

  3. Blázsik, Z., Hujter, M., Pluhár, A., Tuza, Z.: Graphs with no induced \(C_4\) and \(2K_2\). Discrete Math. 115, 51–55 (1993)

    Article  MathSciNet  Google Scholar 

  4. Boncompagni, V., Penev, I., Vuşković, K.: Clique-cutsets beyond chordal graphs. arXiv:1707.03252 [math.CO]

  5. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4, 305–337 (1973)

    Article  MathSciNet  Google Scholar 

  7. Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory (B) 18, 138–154 (1975)

    Article  MathSciNet  Google Scholar 

  8. Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming. Ann. Discrete Math. 1, 145–162 (1977)

    Article  MathSciNet  Google Scholar 

  9. Conforti, M., Cornuéjols, G., Kapoor, A., Vuşković, K.: Universally signable graphs. Combinatorica 17, 67–77 (1997)

    Article  MathSciNet  Google Scholar 

  10. Coulonges, S., Pêcher, A., Wagler, A.: Characterizing and bounding the imperfection ratio for some classes of graphs. Math. Program. A 118, 37–46 (2009)

    Article  MathSciNet  Google Scholar 

  11. Dirac, G.A.: On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 25, 71–76 (1961)

    Article  MathSciNet  Google Scholar 

  12. Escalante, M., Nasini, G.: Lovász and Schrijver \(N_+\)-relaxation on web graphs. In: Fouilhoux, P., Gouveia, L.E.N., Mahjoub, A.R., Paschos, V.T. (eds.) ISCO 2014. LNCS, vol. 8596, pp. 221–229. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09174-7_19

    Chapter  Google Scholar 

  13. Escalante, M., Nasini, G., Wagler, A.: Characterizing \(N_+\)-perfect line graphs. Int. Trans. Oper. Res. 24, 325–337 (2017)

    Article  MathSciNet  Google Scholar 

  14. Földes, S., Hammer, P.: Split graphs having Dilworth number two. Can. J. Math. 29, 666–672 (1977)

    Article  MathSciNet  Google Scholar 

  15. Lipták, L., Tunçel, L.: Stable set problem and the lift-and-project ranks of graphs. Math. Program. A 98, 319–353 (2003)

    Article  MathSciNet  Google Scholar 

  16. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1, 166–190 (1991)

    Article  MathSciNet  Google Scholar 

  17. Shepherd, F.B.: Applying Lehman’s theorem to packing problems. Math. Program. 71, 353–367 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Truemper, K.: Alpha-balanced graphs and matrices and GF(3)-representability of matroids. J. Comb. Theory B 32, 112–139 (1982)

    Article  MathSciNet  Google Scholar 

  19. Wagler, A.: Antiwebs are rank-perfect. 4OR 2, 149–152 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annegret Wagler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wagler, A. (2018). Lovász-Schrijver PSD-Operator on Some Graph Classes Defined by Clique Cutsets. In: Lee, J., Rinaldi, G., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2018. Lecture Notes in Computer Science(), vol 10856. Springer, Cham. https://doi.org/10.1007/978-3-319-96151-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96151-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96150-7

  • Online ISBN: 978-3-319-96151-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics