Skip to main content

Characterization and Approximation of Strong General Dual Feasible Functions

  • Conference paper
  • First Online:
Book cover Combinatorial Optimization (ISCO 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10856))

Included in the following conference series:

Abstract

Dual feasible functions (DFFs) have been used to provide bounds for standard packing problems and valid inequalities for integer optimization problems. In this paper, the connection between general DFFs and a particular family of cut-generating functions is explored. We find the characterization of (restricted/strongly) maximal general DFFs and prove a 2-slope theorem for extreme general DFFs. We show that any restricted maximal general DFF can be well approximated by an extreme general DFF.

The authors gratefully acknowledge partial support from the National Science Foundation through grant DMS-1320051 (M. Köppe). A part of this work was done while the first author (M. Köppe) was visiting the Simons Institute for the Theory of Computing. It was partially supported by the DIMACS/Simons Collaboration on Bridging Continuous and Discrete Optimization through NSF grant CCF-1740425.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will use the term “piecewise linear” throughout the paper without explanation. We refer readers to [13] for precise definitions of “piecewise linear” functions in both continuous and discontinuous cases.

  2. 2.

    In this paper, a function name shown in typewriter font is the name of the function in our SageMath program [12]. At the time of writing, the function is available on the feature branch Later it will be merged into the branch.

  3. 3.

    See the constructor .

  4. 4.

    Interested readers are referred to the function in order to check the claimed properties of \(\phi _{s,\delta }\).

References

  1. Alves, C., Clautiaux, F., de Carvalho, J.V., Rietz, J.: Dual-Feasible Functions for Integer Programming and Combinatorial Optimization: Basics, Extensions and Applications. EURO Advanced Tutorials on Operational Research. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27604-5

    Book  MATH  Google Scholar 

  2. Aráoz, J., Evans, L., Gomory, R.E., Johnson, E.L.: Cyclic group and knapsack facets. Math. Program. Series B 96, 377–408 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bachem, A., Johnson, E.L., Schrader, R.: A characterization of minimal valid inequalities for mixed integer programs. Oper. Res. Lett. 1(2), 63–66 (1982). http://www.sciencedirect.com/science/article/pii/0167637782900487

    Article  MathSciNet  Google Scholar 

  4. Basu, A., Hildebrand, R., Köppe, M.: Equivariant perturbation in Gomory and Johnson’s infinite group problem. I. The one-dimensional case. Math. Oper. Res. 40(1), 105–129 (2014)

    Article  MathSciNet  Google Scholar 

  5. Basu, A., Hildebrand, R., Köppe, M.: Light on the infinite group relaxation I: foundations and taxonomy. 4OR 14(1), 1–40 (2016)

    Article  MathSciNet  Google Scholar 

  6. Basu, A., Hildebrand, R., Köppe, M.: Light on the infinite group relaxation II: sufficient conditions for extremality, sequences, and algorithms. 4OR 14(2), 107–131 (2016)

    Google Scholar 

  7. Basu, A., Hildebrand, R., Köppe, M., Molinaro, M.: A \((k+1)\)-slope theorem for the \(k\)-dimensional infinite group relaxation. SIAM J. Optim. 23(2), 1021–1040 (2013)

    Article  MathSciNet  Google Scholar 

  8. Basu, A., Hildebrand, R., Molinaro, M.: Minimal cut-generating functions are nearly extreme. In: Louveaux, Q., Skutella, M. (eds.) IPCO 2016. LNCS, vol. 9682, pp. 202–213. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33461-5_17

    Chapter  Google Scholar 

  9. Blair, C.E.: Minimal inequalities for mixed integer programs. Discrete Math. 24(2), 147–151 (1978). http://www.sciencedirect.com/science/article/pii/0012365X78901930

    Article  MathSciNet  Google Scholar 

  10. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra, I. Math. Program. 3, 23–85 (1972). https://doi.org/10.1007/BF01584976

    Article  MathSciNet  MATH  Google Scholar 

  11. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra, II. Math. Program. 3, 359–389 (1972). https://doi.org/10.1007/BF01585008

    Article  MathSciNet  MATH  Google Scholar 

  12. Hong, C.Y., Köppe, M., Zhou, Y.: Sage code for the Gomory-Johnson infinite group problem. https://github.com/mkoeppe/cutgeneratingfunctionology. (Version 1.0)

  13. Hong, C.Y., Köppe, M., Zhou, Y.: Equivariant perturbation in Gomory and Johnson’s infinite group problem (V). In: Software for the Continuous and Discontinuous 1-Row Case. Optimization Methods and Software, pp. 1–24 (2017)

    Google Scholar 

  14. Jeroslow, R.G.: Minimal inequalities. Math. Program. 17(1), 1–15 (1979)

    Article  MathSciNet  Google Scholar 

  15. Kılınç-Karzan, F., Yang, B.: Sufficient conditions and necessary conditions for the sufficiency of cut-generating functions. Technical report, December 2015. http://www.andrew.cmu.edu/user/fkilinc/files/draft-sufficiency-web.pdf

  16. Köppe, M., Wang, J.: Structure and interpretation of dual-feasible functions. Electron. Notes Discrete Math. 62, 153–158 (2017). LAGOS 2017 - IX Latin and American Algorithms, Graphs and Optimization. http://www.sciencedirect.com/science/article/pii/S1571065317302664

    Article  Google Scholar 

  17. Lueker, G.S.: Bin packing with items uniformly distributed over intervals [a, b]. In: Proceedings of the 24th Annual Symposium on Foundations of Computer Science, SFCS 1983, pp. 289–297. IEEE Computer Society, Washington, DC (1983). https://doi.org/10.1109/SFCS.1983.9

  18. Rietz, J., Alves, C., Carvalho, J., Clautiaux, F.: Computing valid inequalities for general integer programs using an extension of maximal dual feasible functions to negative arguments. In: 1st International Conference on Operations Research and Enterprise Systems-ICORES 2012 (2012)

    Google Scholar 

  19. Rietz, J., Alves, C., de Carvalho, J.M.V., Clautiaux, F.: On the properties of general dual-feasible functions. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8580, pp. 180–194. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09129-7_14

    Chapter  Google Scholar 

  20. Vanderbeck, F.: Exact algorithm for minimising the number of setups in the one-dimensional cutting stock problem. Oper. Res. 48(6), 915–926 (2000)

    Article  MathSciNet  Google Scholar 

  21. Yıldız, S., Cornuéjols, G.: Cut-generating functions for integer variables. Math. Oper. Res. 41(4), 1381–1403 (2016). https://doi.org/10.1287/moor.2016.0781

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Köppe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Köppe, M., Wang, J. (2018). Characterization and Approximation of Strong General Dual Feasible Functions. In: Lee, J., Rinaldi, G., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2018. Lecture Notes in Computer Science(), vol 10856. Springer, Cham. https://doi.org/10.1007/978-3-319-96151-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96151-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96150-7

  • Online ISBN: 978-3-319-96151-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics