Skip to main content

A PTAS for the Time-Invariant Incremental Knapsack Problem

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10856))

Included in the following conference series:

Abstract

The Time-Invariant Incremental Knapsack problem (IIK) is a generalization of Maximum Knapsack to a discrete multi-period setting. At each time, capacity increases and items can be added, but not removed from the knapsack. The goal is to maximize the sum of profits over all times. IIK models various applications including specific financial markets and governmental decision processes. IIK is strongly NP-Hard [2] and there has been work [2, 3, 6, 13, 15] on giving approximation algorithms for some special cases. In this paper, we settle the complexity of IIK by designing a PTAS based on rounding a disjunctive formulation, and provide several extensions of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the full version of the paper [4] for a discussion on disjunctive programming.

References

  1. Andonov, R., Poirriez, V., Rajopadhye, S.: Unbounded knapsack problem: dynamic programming revisited. Eur. J. Oper. Res. 123(2), 394–407 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bienstock, D., Sethuraman, J., Ye, C.: Approximation algorithms for the incremental knapsack problem via disjunctive programming. arXiv preprint: arXiv:1311.4563 (2013)

  3. Della Croce, F., Pferschy, U., Scatamacchia, R.: Approximation results for the incremental knapsack problem. In: Brankovic, L., Ryan, J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp. 75–87. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78825-8_7

    Chapter  Google Scholar 

  4. Faenza, Y., Malinovic, I.: A PTAS for the time-invariant incremental knapsack problem. arXiv preprint: arXiv:1701.07299v4 (2018)

  5. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation algorithms for maximum general assignment problems. In: Proceedings of SODA 2006, pp. 611–620 (2006)

    Google Scholar 

  6. Hartline, J.: Incremental optimization. Ph.D. thesis, Cornell University (2008)

    Google Scholar 

  7. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22(4), 463–468 (1975)

    Article  MathSciNet  Google Scholar 

  8. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  9. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24777-7

    Book  MATH  Google Scholar 

  10. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York (1990)

    MATH  Google Scholar 

  11. Mathews, G.B.: On the partition of numbers. Proc. Lond. Math. Soc. 28(1), 486–490 (1896)

    Article  MathSciNet  Google Scholar 

  12. Sethuraman, J., Ye, C.: Personal communication (2016)

    Google Scholar 

  13. Sharp, A.: Incremental algorithms: solving problems in a changing world. Ph.D. thesis, Cornell University (2007)

    Google Scholar 

  14. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-76796-1_21

    Chapter  Google Scholar 

  15. Ye, C.: On the trade-offs between modeling power and algorithmic complexity. Ph.D. thesis, Columbia University (2016)

    Google Scholar 

Download references

Acknowledgements

We thank Andrey Kupavskii for valuable combinatorial insights on the topic. Yuri Faenza’s research was partially supported by the SNSF Ambizione fellowship PZ00P2\(\_\)154779 Tight formulations of 0 / 1 problems. Some of the work was done when Igor Malinović visited Columbia University partially funded by a gift from the SNSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Malinovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faenza, Y., Malinovic, I. (2018). A PTAS for the Time-Invariant Incremental Knapsack Problem. In: Lee, J., Rinaldi, G., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2018. Lecture Notes in Computer Science(), vol 10856. Springer, Cham. https://doi.org/10.1007/978-3-319-96151-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96151-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96150-7

  • Online ISBN: 978-3-319-96151-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics