Skip to main content

PATENet: Pairwise Alignment of Time Evolving Networks

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10934))

  • 1816 Accesses

Abstract

Networks that change over time, e.g. functional brain networks that change their structure due to processes such as development or aging, are naturally modeled by time-evolving networks. In this paper we present PATENet, a novel method for aligning time-evolving networks. PATENet offers a mathematically-sound approach to aligning time evolving networks. PATENet leverages existing similarity measures for networks with fixed topologies to define well-behaved similarity measures for time evolving networks. We empirically explore the behavior of PATENet through synthetic time evolving networks under a variety of conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that \( \tilde{\chi }:{\mathcal{G}} \times {\mathcal{G}}^{'} \to {\mathbb{R}} \).

  2. 2.

    Notice that \( \tilde{\chi }\left( {G,G} \right) = 1 \) is not required, as the alignment score has no upper bound.

  3. 3.

    Notice that the OSN similarity score measures similarity in the context of the locally aligned segments of the sequences. That is, if OSNs \( {\mathcal{G}} \) and \( {\mathcal{G}}^{'} \) have \( k \) elements aligned with average element-wise similarity of \( h \), whether \( k = min\left( {n,m} \right) \) or \( k < min\left( {n,m} \right) \), . Additionally, if OSNs \( {\mathcal{G}} \) and \( {\mathcal{G}}^{'} \) have one element aligned with element-wise similarity of 1.0, while OSNs \( {\mathcal{G}} \) and \( {\mathcal{G}}^{''} \) have four elements aligned with each element-wise similarity being 0.9, (but \( \tilde{\chi }\left( {{\mathcal{G}},{\mathcal{G}}^{\prime } } \right) < \tilde{\chi }\left( {{\mathcal{G}},{\mathcal{G}}^{\prime \prime } } \right) \)).

References

  1. Albert, R., Barabasi, A.L.: Topology of evolving networks: local events and universality. Phys. Rev. Lett. 85(24), 5234–5237 (2000). https://doi.org/10.1103/PhysRevLett.85.5234

    Article  Google Scholar 

  2. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

    Article  MathSciNet  MATH  Google Scholar 

  3. Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20(3), 353–364 (2017). https://doi.org/10.1038/nn.4502

    Article  Google Scholar 

  4. Caspi, Y., Irani, M.: Spatio-temporal alignment of sequences. IEEE Trans. Pat. Anal. Mach. Int. 24(11), 1409–1424 (2002). https://doi.org/10.1109/TPAMI.2002.1046148

    Article  Google Scholar 

  5. Dorogovtsev, S.N., Mendes, J.F.F.: Scaling behaviour of developing and decaying networks. Europhys. Lett. 52(1), 33–39 (2000). https://doi.org/10.1209/epl/i2000-00400-0

    Article  Google Scholar 

  6. Elzinga, C.H.: Distance, similarity and sequence comparison. In: Blanchard, P., Bühlmann, F., Gauthier, J.A. (eds.) Advances in Sequence Analysis: Theory, Method, Applications. LCRSP, vol. 2, pp. 51–73. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04969-4_4

    Chapter  Google Scholar 

  7. Emmert-Streib, F., Dehmer, M., Shi, Y.: Fifty years of graph matching, network alignment and network comparison. Inf. Sci. 346, 180–197 (2016). https://doi.org/10.1016/j.ins.2016.01.074

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdos, P., Renyi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  9. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 234–263 (2015). https://doi.org/10.1140/epjb/e2015-60657-4

    Article  Google Scholar 

  10. Holme, P., Saramki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012). https://doi.org/10.1016/j.physrep.2012.03.001

    Article  Google Scholar 

  11. Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014). https://doi.org/10.1093/comnet/cnu016

    Article  Google Scholar 

  12. Koutra, D., Vogelstein, J.T., Faloutsos, C.: DELTACON: a principled massive-graph similarity function. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 162–170. SIAM (2013). https://doi.org/10.1137/1.9781611972832.18

  13. Lee, W.N., Das, A.K.: Local alignment tool for clinical history: temporal semantic search of clinical databases. In: AMIA Annual Symposium Proceedings, pp. 437–441 (2010)

    Google Scholar 

  14. Li, A., Cornelius, S.P., Liu, Y.Y., Wang, L., Barabasi, A.L.: The fundamental advantages of temporal networks. Science 358(6366), 1042–1046 (2017). https://doi.org/10.1126/science.aai7488

    Article  Google Scholar 

  15. Luo, G., Cordier, F., Seo, H.: Spatio-temporal segmentation for the similarity measurement of deforming meshes. Vis. Comput. 32(2), 243–256 (2016). https://doi.org/10.1007/s00371-015-1178-8

    Article  Google Scholar 

  16. Madhyastha, T., Peverill, M., Koh, N., McCabe, C., Flournoy, J., Mills, K., King, K., Pfeifer, J., McLaughlin, K.A.: Current methods and limitations for longitudinal fMRI analysis across development. Dev. Cogn. Neurosci. (2017). https://doi.org/10.1016/j.dcn.2017.11.006

    Article  Google Scholar 

  17. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981). https://doi.org/10.1016/0022-2836(81)90087-5

    Article  Google Scholar 

  18. Towfic, F., Greenlee, M.H.W., Honavar, V.: Aligning biomolecular networks using modular graph kernels. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 345–361. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04241-6_29

    Chapter  Google Scholar 

Download references

Acknowledgments

This project was supported in part by the National Center for Advancing Translational Sciences, National Institutes of Health through Grant UL1 TR000127 and TR002014, by the National Science Foundation, through Grant SHF 1518732, the Center for Big Data Analytics and Discovery Informatics at Pennsylvania State University, the Edward Frymoyer Endowed Professorship in Information Sciences and Technology at Pennsylvania State University and the Sudha Murty Distinguished Visiting Chair in Neurocomputing and Data Science funded by the Pratiksha Trust at the Indian Institute of Science [both held by Vasant Honavar]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the sponsors. We thank Sanghack Lee for helpful discussions during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shlomit Gur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gur, S., Honavar, V.G. (2018). PATENet: Pairwise Alignment of Time Evolving Networks. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10934. Springer, Cham. https://doi.org/10.1007/978-3-319-96136-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96136-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96135-4

  • Online ISBN: 978-3-319-96136-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics