Skip to main content

MaxMin Linear Initialization for Fuzzy C-Means

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10934))

  • 1779 Accesses

Abstract

Clustering is an extensive research area in data science. The aim of clustering is to discover groups and to identify interesting patterns in datasets. Crisp (hard) clustering considers that each data point belongs to one and only one cluster. However, it is inadequate as some data points may belong to several clusters, as is the case in text categorization. Thus, we need more flexible clustering. Fuzzy clustering methods, where each data point can belong to several clusters, are an interesting alternative. Yet, seeding iterative fuzzy algorithms to achieve high quality clustering is an issue. In this paper, we propose a new linear and efficient initialization algorithm MaxMin Linear to deal with this problem. Then, we validate our theoretical results through extensive experiments on a variety of numerical real-world and artificial datasets. We also test several validity indices, including a new validity index that we propose, Transformed Standardized Fuzzy Difference (TSFD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://archive.ics.uci.edu/ml/.

References

  1. Ruspini, E.H.: Numerical methods for fuzzy clustering. Inf. Sci. 2(3), 319–350 (1970)

    Article  Google Scholar 

  2. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  3. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters (1973)

    Article  MathSciNet  Google Scholar 

  4. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  5. Kaufman, L., Rousseeuw, P.J.: Partitioning around medoids (program PAM). In: Finding Groups in Data: An Introduction to Cluster Analysis, pp. 68–125 (1990)

    Google Scholar 

  6. Steinley, D., Brusco, M.J.: Initializing k-means batch clustering: a critical evaluation of several techniques. J. Classif. 24(1), 99–121 (2007)

    Article  MathSciNet  Google Scholar 

  7. Maitra, R., Peterson, A.D., Ghosh, A.P.: A systematic evaluation of different methods for initializing the k-means clustering algorithm. IEEE Trans. Knowl. Data Eng. 41 (2011)

    Google Scholar 

  8. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013)

    Article  Google Scholar 

  9. Norušis, M.J.: IBM SPSS Statistics 19 Statistical Procedures Companion. Prentice Hall, Upper Saddle River (2012)

    Google Scholar 

  10. Faber, V.: Clustering and the continuous k-means algorithm. Los Alamos Sci. 22(138144.21), 138–144 (1994)

    Google Scholar 

  11. Hand, D.J., Krzanowski, W.J.: Optimising k-means clustering results with standard software packages. Comput. Stat. Data Anal. 49(4), 969–973 (2005)

    Article  MathSciNet  Google Scholar 

  12. Bradley, P.S., Fayyad, U.M.: Refining initial points for k-means clustering. In: ICML, vol. 98, pp. 91–99 (1998)

    Google Scholar 

  13. Su, T., Dy, J.G.: In search of deterministic methods for initializing k-means and Gaussian mixture clustering. Intell. Data Anal. 11(4), 319–338 (2007)

    Article  Google Scholar 

  14. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  15. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, pp. 1027–1035 (2007)

    Google Scholar 

  16. Lance, G.N., Williams, W.T.: A general theory of classificatory sorting strategies: II. Clustering systems. Comput. J. 10(3), 271–277 (1967)

    Article  Google Scholar 

  17. Astrahan, M.: Speech analysis by clustering, or the hyperphoneme method. Technical report, Department of Computer Science, Stanford University, CA (1970)

    Google Scholar 

  18. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  Google Scholar 

  19. Wang, W., Zhang, Y.: On fuzzy cluster validity indices. Fuzzy Sets Syst. 158(19), 2095–2117 (2007)

    Article  MathSciNet  Google Scholar 

  20. Bezdek, J.C.: Cluster validity with fuzzy sets (1973)

    Google Scholar 

  21. Chen, M.Y., Linkens, D.A.: Rule-base self-generation and simplification for data-driven fuzzy models. In: The 10th IEEE International Conference on Fuzzy Systems, vol. 1, pp. 424–427. IEEE (2001)

    Google Scholar 

  22. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  23. Fukuyama, Y.: A new method of choosing the number of clusters for the fuzzy c-mean method. In: Proceedings of 5th Fuzzy Systems Symposium, pp. 247–250 (1989)

    Google Scholar 

  24. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 841–847 (1991)

    Article  Google Scholar 

  25. Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3(3), 370–379 (1995)

    Article  Google Scholar 

  26. Park, H.S., Jun, C.H.: A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 36(2), 3336–3341 (2009)

    Article  Google Scholar 

  27. Bensaid, A.M., Hall, L.O., Bezdek, J.C., Clarke, L.P., Silbiger, M.L., Arrington, J.A., Murtagh, R.F.: Validity-guided (re)clustering with applications to image segmentation. IEEE Trans. Fuzzy Syst. 4(2), 112–123 (1996)

    Article  Google Scholar 

  28. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.C., Lin, C.C., Meyer, M.D.: Package e1071. Version 1.6-8 (2017)

    Google Scholar 

Download references

Acknowledgements

This project is supported by the Rhône Alpes Region’s ARC 5: “Cultures, Sciences, Sociétés et Médiations” through A. Öztürk’s Ph.D. grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aybüke Öztürk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Öztürk, A., Lallich, S., Darmont, J., Waksman, S.Y. (2018). MaxMin Linear Initialization for Fuzzy C-Means. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10934. Springer, Cham. https://doi.org/10.1007/978-3-319-96136-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96136-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96135-4

  • Online ISBN: 978-3-319-96136-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics