Skip to main content

Educational Data Mining: An Application of Regressors in Predicting School Dropout

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2018)

Abstract

School dropout is one of the great challenges for the educational system. Educational data mining seeks to study and contribute with results that aim to hidden problems and find possible solutions. Considering its importance, this work aims to use two nonparametric techniques, Quantile Regression and Support Vector Regression, to predict the results of school dropout in the Brazilian scenario. The development of the work followed the phases of CRISP-DM. The evaluation metric of the models is the mean of the absolute error. The results show more significant results for Support Vector Regression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lobo, M.B.C.M.: Panorama da evasão no ensino superior brasileiro: aspectos gerais das causas e soluções. Associação Brasileira de Mantenedoras de Ensino Superior. Cadernos, no. 25 (2012)

    Google Scholar 

  2. INEP: Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. http://portal.inep.gov.br. Accessed 22 Dec 2017

  3. INEP: Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira: INEP divulga dados inéditos sobre fluxo escolar na educação básica. http://portal.inep.gov.br/. Accessed 07 Jan 2018

  4. Baker, R., Isotani, S., Carvalho, A.: Mineração de dados educacionais: oportunidades para o Brasil. Braz. J. Comput. Educ. 19(02), 03 (2011)

    Google Scholar 

  5. Guy, M.: The open education working group: bringing people, projects and data together. In: Mouromtsev, D., d’Aquin, M. (eds.) Open Data for Education. LNCS, vol. 9500, pp. 166–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30493-9_9

    Chapter  Google Scholar 

  6. Romero, C., Ventura, S.: Data mining in education. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 3(1), 12–27 (2013)

    Google Scholar 

  7. Sharma, M., Mavani, M.: Accuracy comparison of predictive algorithms of data mining: application in education sector. In: Unnikrishnan, S., Surve, S., Bhoir, D. (eds.) ICAC3 2011. CCIS, vol. 125, pp. 189–194. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18440-6_23

    Chapter  Google Scholar 

  8. Yu, C.H., DiGangi, S., Jannasch-Pennell, A., Kaprolet, C.: A data mining approach for identifying predictors of student retention from sophomore to junior year. J. Data Sci. 8(2), 307–325 (2010)

    Google Scholar 

  9. Yadav, S.K., Pal, S.: Data mining application in enrollment management: a case study. Int. J. Comput. Appl. 41(5), 1–6 (2012)

    Google Scholar 

  10. Ramaswami, M., Bhaskaran, R.: A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144 (2010)

  11. Meedech, P., Iam-On, N., Boongoen, T.: Prediction of student dropout using personal profile and data mining approach. Intelligent and Evolutionary Systems. PALO, vol. 5, pp. 143–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27000-5_12

    Chapter  Google Scholar 

  12. Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to Linear Regression Analysis, vol. 821. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  13. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: CRISP-DM 1.0 step-by-step data mining guide. CRISP-DM Consortium (2000)

    Google Scholar 

  14. Machado, R.D., Benitez, E., Corleta, J., Augusto, G.: Estudo bibliométrico em mineração de dados e evasão escolar. In: Apresentado na XI Congresso Nacional de Excelência em Gestão, Rio de Janeiro, RJ (2015)

    Google Scholar 

  15. Martinho, V.R.D.C., Nunes, C., Minussi, C.R.: An intelligent system for prediction of school dropout risk group in higher education classroom based on artificial neural networks. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 159–166. IEEE (2013)

    Google Scholar 

  16. Quadri, M.M., Kalyankar, N.: Drop out feature of student data for academic performance using decision tree techniques. Global J. Comput. Sci. Technol. 10(2), 1–4 (2010)

    Google Scholar 

  17. Cambruzzi, W.L., Rigo, S.J., Barbosa, J.L.: Dropout prediction and reduction in distance education courses with the learning analytics multitrail approach. J. UCS 21(1), 23–47 (2015)

    Google Scholar 

  18. Márquez-Vera, C., Morales, C.R., Soto, S.V.: Predicting school failure and dropout by using data mining techniques. IEEE Rev. Iberoam. Tecnol. Aprendiz. 8(1), 7–14 (2013)

    Article  Google Scholar 

  19. Veitch, W.R.: Identifying characteristics of high school dropouts: data mining with a decision tree model (2004). (Online Submission)

    Google Scholar 

  20. da Cunha, J.A., Moura, E., Analide, C.: Data mining in academic databases to detect behaviors of students related to school dropout and disapproval. New Advances in Information Systems and Technologies. AISC, vol. 445, pp. 189–198. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31307-8_19

    Chapter  Google Scholar 

  21. Rodrigues, R.L., de Medeiros, F.P., Gomes, A.S.: Modelo de regressão linear aplicado à previsão de desempenho de estudantes em ambiente de aprendizagem. In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE), vol. 24, p. 607 (2013)

    Google Scholar 

  22. Koenker, R., Bassett Jr., G.: Regression quantiles. Econom.: J. Econom. Soc. 46(1), 33–50 (1978)

    Article  MathSciNet  Google Scholar 

  23. Chen, Y., Xu, P., Chu, Y., Li, W., Wu, Y., Ni, L., Bao, Y., Wang, K.: Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings. Appl. Energy 195, 659–670 (2017)

    Article  Google Scholar 

  24. Moro, S., Laureano, R., Cortez, P.: Using data mining for bank direct marketing: an application of the CRISP-DM methodology. In: Proceedings of European Simulation and Modelling Conference-ESM 2011, pp. 117–121. Eurosis (2011)

    Google Scholar 

  25. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?-arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafaella Leandra Souza do Nascimento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

do Nascimento, R.L.S., das Neves Junior, R.B., de Almeida Neto, M.A., de Araújo Fagundes, R.A. (2018). Educational Data Mining: An Application of Regressors in Predicting School Dropout. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10935. Springer, Cham. https://doi.org/10.1007/978-3-319-96133-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96133-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96132-3

  • Online ISBN: 978-3-319-96133-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics