Skip to main content

Biot’s Parameters Estimation in Ultrasound Propagation Through Cancellous Bone

  • Conference paper
  • First Online:
Numerical and Evolutionary Optimization – NEO 2017 (NEO 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 785))

Included in the following conference series:

  • 355 Accesses

Abstract

Of interest is the characterization of a cancellous bone immersed in an acoustic fluid. The bone is placed between an ultrasonic point source and a receiver. Cancellous bone is regarded as a porous medium saturated with fluid according to Biot’s theory. This model is coupled with the fluid in an open pore configuration and solved by means of the Finite Volume Method. Characterization is posed as a Bayesian parameter estimation problem in Biot’s model given pressure data collected at the receiver. As a first step we present numerical results in 2D for signal recovery. It is shown that as point estimators, the Conditional Mean outperforms the classical PDE-constrained minimization solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia (2005)

    Book  Google Scholar 

  2. Buchanan, J.L., Gilbert, R.P.: Determination of the parameters of cancellous bone using high frequency acoustic measurements. Math. Comput. Mode. 45(3), 281–308 (2007)

    Article  MathSciNet  Google Scholar 

  3. Buchanan, J.L., Gilbert, R.P.: Measuring osteoporosis using ultrasound. In: Fotiadis, D.I., Massalas, C.V. (eds.) Advances in Scattering and Biomedical Engineering, pp. 484–494. World Scientific, Singapore (2004)

    Google Scholar 

  4. Buchanan, J.L., Gilbert, R.P.: Determination of the parameters of cancellous bone using high frequency acoustic measurements II: inverse problems. J. Comput. Acoust. 15(02), 199–220 (2007)

    Article  MathSciNet  Google Scholar 

  5. Chiavassa, G., Lombard, B.: Wave propagation across acoustic/Biot’s media: a finite-difference method. Commun. Comput. Phys. 13(4), 985–1012 (2013). https://doi.org/10.4208/cicp.140911.050412a

    Article  MathSciNet  MATH  Google Scholar 

  6. Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J.: emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125(925), 306 (2013)

    Article  Google Scholar 

  7. Hosokawa, A., Otani, T.: Ultrasonic wave propagation in bovine cancellous bone. J. Acoust. Soc. Am. 101(1), 558–562 (1997)

    Article  Google Scholar 

  8. Hosokawa, A., Otani, T.: Acoustic anisotropy in bovine cancellous bone. J. Acoust. Soc. Am. 103(5), 2718–2722 (1998)

    Article  Google Scholar 

  9. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, vol. 160. Springer, New York (2006)

    MATH  Google Scholar 

  10. Laugier, P., Haeiat, G. (eds.): Bone Quantitative Ultrasound. Springer, Amsterdam (2011)

    Google Scholar 

  11. Lovera, O.M.: Boundary conditions for a fluid-saturated porous solid. Geophysics 52(2), 174–178 (1987)

    Article  Google Scholar 

  12. Lowet, G., Van der Perre, G.: Ultrasound velocity measurements in long bones: measurement method and simulation of ultrasound wave propagation. J. Biomech. 29, 1255–1262 (1996)

    Article  Google Scholar 

  13. Mazumder, S.: Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods. Academic Press, Cambridge (2016)

    MATH  Google Scholar 

  14. Nguyen, V.H., Naili, S.: Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method. Int. J. Numer. Methods Biomed. Eng. 28(8), 861–876 (2012)

    Article  MathSciNet  Google Scholar 

  15. Nguyen, V.H., Naili, S., Sansalone, V.: Simulation of ultrasonic wave propagation in anisotropic cancellous bones immersed in fluid. Wave Motion 47(2), 117–129 (2010)

    Article  Google Scholar 

  16. Pakula, M., Padilla, F., Laugier, P., Kaczmarek, M.: Application of Biot’s theory to ultrasonic characterization of human cancellous bones: determination of structural, material, and mechanical properties. J. Acoust. Soc. Am. 123(4), 2415–2423 (2008)

    Article  Google Scholar 

  17. Sebaa, N., Fellah, Z.E.A., Fellah, M., Ogam, E., Wirgin, A., Mitri, F.G., Lauriks, W.: Ultrasonic characterization of human cancellous bone using the Biot theory: inverse problem. J. Acoust. Soc. Am. 120(4), 1816–1824 (2006)

    Article  Google Scholar 

  18. Stuart, A.M.: Inverse problems: a Bayesian perspective. Acta Numer. 19, 451–559 (2010)

    Article  MathSciNet  Google Scholar 

  19. Wear, K.A., Laib, A., Stuber, A.P., Reynolds, J.C.: Comparison of measurements of phase velocity in human calcaneus to Biot theory. J. Acoust. Soc. Am. 117(5), 3319–3324 (2005)

    Article  Google Scholar 

  20. Olsson, D.M., Nelson, L.S.: The Nelder-Mead simplex procedure for function minimization. Technometrics 17(1), 45–51 (1975)

    Article  Google Scholar 

  21. Han, L., Neumann, M.: Effect of dimensionality on the Nelder-Mead simplex method. Optim. Methods Softw. 21(1), 1–16 (2006)

    Article  MathSciNet  Google Scholar 

  22. Mckinnon, K.I.M.: Convergence of the Nelder-Mead simplex method to a nonstationary point. SIAM J. Optim. 9, 148–158 (1998)

    Article  MathSciNet  Google Scholar 

  23. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

M. A. Moreles would like to acknowledge to ECOS-NORD project number 000000000263116/M15M01 for financial support during this research. Also, part of this research was carried out while M. A. Moreles was a visiting professor at the mathematics Department of the Universidad de Guadalajara. Their hospitality is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Moreles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moreles, M.A., Peña, J., Neria, J.A. (2019). Biot’s Parameters Estimation in Ultrasound Propagation Through Cancellous Bone. In: Trujillo, L., Schütze, O., Maldonado, Y., Valle, P. (eds) Numerical and Evolutionary Optimization – NEO 2017. NEO 2017. Studies in Computational Intelligence, vol 785. Springer, Cham. https://doi.org/10.1007/978-3-319-96104-0_11

Download citation

Publish with us

Policies and ethics