Skip to main content

Virtual Reality Simulation and Ergonomics Assessment in Aviation Maintainability

  • Conference paper
  • First Online:
Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018) (IEA 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 822))

Included in the following conference series:

Abstract

This study aims to know better the potential of simulation tools used currently by maintainability engineers to analyse Human Factors/ergonomics (HFE). Non-ergonomics experts can use digital/physical simulation tools through virtual reality platforms and physical mock-ups to analyse whether the design is well adapted to future users, especially maintenance operators in the aviation field. Knowing the potential of these simulation tools would be the primary step in developing a new way of working for engineers to integrate HFE better in the design process of the aviation industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiener EL, Nagel DC (eds) (1988) Human factors in aviation. Gulf Professional Publishing, Houston

    Google Scholar 

  2. Horeman T, Akhtar K, Tuijthof GJ (2015) Physical simulators. In: Effective training of arthroscopic skills. Springer, Berlin, pp 57–69

    Google Scholar 

  3. Spenser J (2008) The airplane. Collins, New York

    Google Scholar 

  4. Hobbs AN (2000) Maintenance ‘error’, lessons from the BASI survey. Flight Saf Aust 4:36–37

    Google Scholar 

  5. Gruber M, De Leon N, George G, Thompson P (2015) Managing by design. Acad Manag J 58(1):1–7

    Article  Google Scholar 

  6. Stoffregen T, Bardy BG, Smart L, Pagulayan R (2003) Virtual and adaptive environments: applications, implications, and human performance issues, chap. On the nature and evaluation of fidelity in virtual environments, pp 111–128

    Google Scholar 

  7. Bernard F, Bazzaro F, Paquin R, Sagot JC (2017 January). Consideration of human factors in aeronautical maintainability. Annual reliability and maintainability symposium. (IEEE), Jan 2017, pp 37–43

    Google Scholar 

  8. Broberg O (2007) Integrating ergonomics into engineering: empirical evidence and implications for the ergonomists. Hum Factors Ergon Manuf Serv Ind 17(4):353–366

    Article  Google Scholar 

  9. Sharma HK, Singhal P, Sonia P (2018) Computer-assisted industrial ergonomics: a review. In: ergonomic design of products and worksystems—21st century perspectives of Asia (pp 37–48). Springer, Singapore

    Google Scholar 

  10. Amundarain A, Borro D, Matey L, Alonso AG, de Guipúzcoa T (2003) Occlusion culling for the visualization of aeronautical engines digital mock-ups. In: Proceedings of virtual concept, Biarritz, France, pp 5–7

    Google Scholar 

  11. Yongsheng S, Yu L (2012) Application of DELMIA on maintainability design of aircraft. In Proceedings of the 2nd international conference on computer application and system modeling, 4p

    Google Scholar 

  12. Sagot, J. C. (1999). Ergonomie et conception anthropocentrée. Document pour l’Habilitation à diriger des recherches, Institut National Polytechnique de Lorraine (INPL), Nancy, 21

    Google Scholar 

  13. Czerniak JN, Brandl C, Mertens A (2017) Designing human-machine interaction concepts for machine tool controls regarding ergonomic requirements. In: IFAC-PapersOnLine, vol 50(1), pp 1378–1383

    Google Scholar 

  14. Bittencourt JM, Duarte F, Béguin P (2017) From the past to the future: integrating work experience into the design process. Work 57(3):379–387

    Article  Google Scholar 

  15. Das B, Sengupta AK (1996) Industrial workstation design: a systematic ergonomics approach. Appl Ergon 27(3):157–163

    Article  Google Scholar 

  16. Meister D (2014) Human factors testing and evaluation, vol 5. Elsevier, Amsterdam

    Google Scholar 

  17. Pontonnier C, Dumont G, Samani A, Madeleine P, Badawi M (2014) Designing and evaluating a workstation in real and virtual environment: toward virtual reality based ergonomic design sessions. J Multimodal User Interfaces 8(2):199–208

    Article  Google Scholar 

  18. Aromaa S, Väänänen K (2016) Suitability of virtual prototypes to support human factors/ergonomics evaluation during the design. Appl Ergon 56:11–18

    Article  Google Scholar 

  19. CEN/TC319.EN13306:2010 Maintenance–maintenance terminology. European Standard, Bruxelles

    Google Scholar 

  20. Lee SG, Ma YS, Thimm GL, Verstraeten J (2008) Product lifecycle management in aviation maintenance, repair and overhaul. Comput Ind 59(2):296–303

    Article  Google Scholar 

  21. Čokorilo O (2011) Aircraft performance: the effects of the multi attribute decision making of non time dependant maintainability parameters. Int J Traffic Transp Eng 1(1):42–48

    Google Scholar 

  22. Chang Yu-Hern, Wang Ying-Chun (2010) Significant human risk factors in aircraft maintenance technicians. Saf Sci 48(1):54–62

    Article  Google Scholar 

  23. AFIM (2004) Association française des ingénieurs et responsables de maintenance- santé et sécurité au travail: les métiers de la maintenance en première ligne. Guide nationale de la maintenance

    Google Scholar 

  24. Regazzoni D, Rizzi C (2014) Digital human models and virtual ergonomics to improve maintainability. Comput Aided Design Appl 11(1):10–19

    Article  Google Scholar 

  25. De Sa AG, Zachmann G (1999) Virtual reality as a tool for verification of assembly and maintenance processes. Comput Graph 23(3):389–403

    Article  Google Scholar 

  26. De Leon PM, Díaz VGP, Martínez LB, Marquez AC (2012) A practical method for the maintainability assessment in industrial devices using indicators and specific attributes. Reliab Eng Syst Saf 100:84–92

    Article  Google Scholar 

  27. Perez J, Neumann WP (2010) The use of virtual human factors tools in industry—a workshop investigation. Ryerson University, Human Factors Engineering Lab Technical Report, 3

    Google Scholar 

  28. Garza LE, Pantoja G, Ramirez P, Ramirez H, Rodriguez N, Gonzalez E, Quintal R, Perez JA (2013) Augmented reality application for the maintenance of a flapper valve of a Fuller-Kynion Type M Pump. Procedia Comput Sci 25:154–160

    Article  Google Scholar 

  29. Seth A, Vance JM, Oliver JH (2011) Virtual reality for assembly methods prototyping: a review. Virtual Real 15(1):5–20

    Article  Google Scholar 

  30. ISO 15537:2004 Principles for selecting and using test persons for testing anthropometric aspects of industrial products and designs

    Google Scholar 

  31. International Ergonomics Association (2000) What is ergonomics. IEA members” and “study programs” (nd). Available at http://www.iea.cc/index.php

  32. NF EN1005-4:2008 Human physical performance Part 4: evaluation of working postures and movements in relation to machinery

    Google Scholar 

  33. McAtamney L, Corlett EN (1993) RULA: a survey method for the investigation of work-related upper limb disorders. Appl Ergon 24(2):91–99

    Article  Google Scholar 

  34. Borg G (1982) Psychophysical bases of perceived exertion. Med Sci Sport Exerc 14:377–381

    Google Scholar 

  35. Chitescu C, Sagot JC, Gomes S (2003) Favoriser l’articulation “Ergonomie/conception de produits” à l’aide de mannequins numériques. Dans les actes de la conférence 10eme Séminaire CONFERE (Collège d’Etudes et de Recherches en Design et Conception de Produits) sur l’Innovation et la Conception, Belfort, July 2003, pp 3–4

    Google Scholar 

  36. Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Adv Psychol 52:139–183

    Article  Google Scholar 

  37. Kuorinka I, Jonsson B, Kilbom A, Vinterberg H, Biering-Sørensen F, Andersson G, Jørgensen K (1987) Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. Appl Ergon 18(3):233–237

    Article  Google Scholar 

  38. Burns A, Salter T, Sugden B, Sutherland J (2018) U.S. Patent No. 9,865,089. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  39. Bowman DA, McMahan RP (2007) Virtual reality: how much immersion is enough? Computer 40(7):36–43

    Article  Google Scholar 

  40. Loomis JM, Philbeck JW (2008) Measuring spatial perception with spatial updating and action. In: Carnegie symposium on cognition, 2006, Psychology Press, Pittsburgh, PA, US

    Google Scholar 

  41. Chen W, Chao JG, Zhang Y, Wang JK, Chen XW, Tan C (2017) Orientation preferences and motion sickness induced in a virtual reality environment. Aerosp Med Hum Perform 88(10):903–910

    Article  Google Scholar 

  42. Savall J, Borro D, Gil JJ, Matey L (2002) Description of a haptic system for virtual maintainability in aeronautics. In: IEEE/RSJ international conference on intelligent robots and systems, vol 3, pp 2887–2892

    Google Scholar 

  43. Wang R, Yao J, Wang L, Liu X, Wang H, Zheng L (2017). A surgical training system for four medical punctures based on virtual reality and haptic feedback. In: 2017 IEEE symposium on 3D user interfaces (3DUI), Mar 2017, pp 215–216

    Google Scholar 

  44. Langley A, Lawson G, Hermawati S, D’Cruz M, Apold J, Arlt F, Mura K (2016) Establishing the usability of a virtual training system for assembly operations within the automotive industry. Hum Factors Ergon Manuf Serv Ind 26(6):667–679

    Article  Google Scholar 

  45. Riley S (2016) U.S. Patent No. 9,403,087. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  46. Meier P, Holzer S (2015) U.S. Patent No. 9,165,405. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  47. Menezes P, Gouveia N, Patrão B (2018) Touching is believing-adding real objects to virtual reality. In: Online engineering and internet of things. Springer, Cham, pp 681–688

    Google Scholar 

  48. Lawson G, Salanitri D, Waterfield B (2016) Future directions for the development of virtual reality within an automotive manufacturer. Appl Ergon 53:323–330

    Article  Google Scholar 

Download references

Acknowledgement

I express my deepest and sincere gratitude to all the operators who participated in this experimentation: Jean-Michel, Franck F, Franck R, Charly, Eric, Philippe and Thierry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Bernard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bernard, F., Zare, M., Sagot, JC., Paquin, R. (2019). Virtual Reality Simulation and Ergonomics Assessment in Aviation Maintainability. In: Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y. (eds) Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018). IEA 2018. Advances in Intelligent Systems and Computing, vol 822. Springer, Cham. https://doi.org/10.1007/978-3-319-96077-7_15

Download citation

Publish with us

Policies and ethics