Skip to main content

Assistive Robots in Highly Flexible Automotive Manufacturing Processes

A Usability Study on Human-Robot-Interfaces

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 825))

Abstract

Increasing demand for more product variants combined with shorter life cycles lead to higher complexity in production processes. One opportunity to overcome these challenges is seen in the combination of manual and automated work within usable instructive Human-Robot-Collaboration (iHRC). An assistive robot receives instructions from a worker, where and how to execute the next production steps. This allows a flexible adaptation to various production conditions without altering the robot programming. In order to realize such production systems, usable Human-Robot-Interfaces (HRIs) are necessary. Frameworks for the conceptual and methodological design as well as evaluation of such systems cannot be found in scientific literature or practice. This paper reports the development of an iHRC system for the automotive sector with the use of a mixed-method user-centered design framework. We show multi-dimensional usability aspects of HRIs as well as reflect on the suitability of the chosen development methods and their use in practice. The resulting prototype, the executed analysis and usability studies provide a basis for usable iHRC. First design principles for further developments of HRIs in the industrial context can be derived.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bänziger T, Kunz A, Wegener K (2017) A library of skills and behaviors for smart mobile assistant robots in automotive assembly lines. In: Mutlu B, Tscheligi M (eds) Proceedings of the companion of the 2017 ACM/IEEE international conference on human-robot interaction. ACM, pp 77–78

    Google Scholar 

  2. Kahl B, Bodenmüller T, Kuss A (2016) Technologien für flexible Robotersysteme: Wirtschaftliche Automatisierungslösungen (nicht nur) für kleine und mittlere Produktionsgrößen. Ind 4.0 Manag 32(2):11–14

    Google Scholar 

  3. IFR Statistical Department (2016) Industrial robots 2016

    Google Scholar 

  4. Steegmüller D, Zürn M (2017) Wandlungsfähige Produktionssysteme für den Automobilbau der Zukunft. In: Vogel-Heuser B, Bauernhansl T, Hompel M ten (eds) Handbuch Industrie 4.0 Bd.1: Produktion, 2., erweiterte und bearbeitete Auflage. Springer, Heidelberg, pp 27–44

    Google Scholar 

  5. Akan B, Cürüklü B, Spampinato G et al (2010) Towards robust human robot collaboration in industrial environments. In: Proceedings of the 5th ACM/IEEE international conference on human-robot interaction: HRI 2010. ACM, IEEE, Piscataway, pp 71–72

    Google Scholar 

  6. Forge S, Blackman C (2010) A helping hand for Europe: the competitive outlook for the EU robotics industry

    Google Scholar 

  7. Guerin KR, Riedel SD, Bohren J et al (2014) Adjutant: a framework for flexible human-machine collaborative systems. In: Proceedings of the 2014 international conference on intelligent robots and systems. IEEE, RSJ, pp 1392–1399

    Google Scholar 

  8. Michalos G, Makris S, Spiliotopoulos J et al (2014) ROBO-PARTNER: seamless human-robot cooperation for intelligent, flexible and safe operations in the assembly factories of the future. Proc CIRP 23:71–76. https://doi.org/10.1016/j.procir.2014.10.079

    Article  Google Scholar 

  9. Naumann M, Dietz T, Kuss A (2017) Mensch-Maschine-Interaktion. In: Vogel-Heuser B, Bauernhansl T, Hompel M ten (eds) Handbuch Industrie 4.0 Bd.4: Allgemeine Grundlagen. Springer, Heidelberg, pp 201–216

    Google Scholar 

  10. Huber W (2016) Industrie 4.0 in der Automobilproduktion: Ein Praxisbuch. Springer Fachmedien Wiesbaden, Wiesbaden

    Google Scholar 

  11. Tsarouchi P, Makris S, Chryssolouris G (2016) Human-robot interaction: review and challenges on task planning and programming. Int J Comput Integr Manuf 29(8):916–931. https://doi.org/10.1080/0951192x.2015.1130251

    Article  Google Scholar 

  12. Buchner R, Mirnig N, Weiss A et al (2012) Evaluating in real life robotic environment: bringing together research and practice. In: Proceedings of the 2012 21st IEEE international symposium on robot and human interactive communication: IEEE RO-MAN 2012. IEEE, Piscataway, pp 602–607

    Google Scholar 

  13. Weiss A, Huber A, Minichberger J et al (2016) First application of robot teaching in an existing industry 4.0 environment: does it really work? Societies 6(3):20. https://doi.org/10.3390/soc6030020

  14. Baxter P, Kennedy J, Senft E et al (2016) From characterising three years of HRI to methodology and reporting recommendations. In: Proceedings of the 2016 11th ACM/IEEE international conference on human robot interation: HRI 2016. ACM, IEEE, pp 391–398

    Google Scholar 

  15. Sheridan TB (2016) Human-robot interaction: status and challenges. Hum Factors 58(4):525–532. https://doi.org/10.1177/0018720816644364

    Article  Google Scholar 

  16. Schleicher T (2018) Leitfaden zur Gestaltung einer gebrauchstauglichen instruktiven Mensch-Roboter-Kollaboration am Produktionsarbeitsplatz (in Veröffentlichung). In: Bullinger-Hoffmann AC (ed) innteract 2018: innovation der Innovation - neu gedacht, neu gemacht. aw&I Conference. aw&I Wissenschaft und Praxis

    Google Scholar 

  17. Akan B, Cürüklü B, Asplund L (2008) Interacting with industrial robots through a multi-model language and sensor system. In: Proceedings of the 39th international symposium on robotics. ACM, pp 66–69

    Google Scholar 

  18. Vogel C, Walter C, Elkmann N (2012) Exploring the possibilities of supporting robot-assisted work places using a projection-based sensor system. In: Zug S (ed) Proceedings of the 2012 IEEE international symposium on robotic and sensors environments (ROSE). IEEE, Piscataway, pp 67–72

    Google Scholar 

  19. Rohde M, Pallasch A, Kunaschk S (2012) Effiziente Automatisierung mittels Industrierobotern: Potenziale für gering standardisierte Aufgabenstellungen in der Logistik. Prod Manag 17(2):21–24

    Google Scholar 

  20. Švaco M, Šekoranja B, Jerbić B (2012) Industrial robotic system with adaptive control. Proc Comput Sci 12:164–169. https://doi.org/10.1016/j.procs.2012.09.048

    Article  Google Scholar 

  21. Sekoranja B, Jerbic B, Suligoj F (2015) Virtual surface for human-robot interaction. Trans Famena 39(1):53–64

    Google Scholar 

  22. Sobaszek Ł, Gola A (2015) Perspective and methods of human-industrial robots cooperation. AMM 791:178–183. https://doi.org/10.4028/www.scientific.net/AMM.791.178

    Article  Google Scholar 

  23. Barbagallo R, Cantelli L, Mirabella O et al (2016) Human-robot interaction through kinect and graphics tablet sensing devices. In: Proceedings of the 24th mediterranean conference on control & automation. IEEE, pp 551–556

    Google Scholar 

  24. Maurtua I, Pedrocchi N, Orlandini A et al (2016) FourByThree: imagine humans and robots working hand in hand. In: Proceedings of the 2016 IEEE 21st international conference on emerging technologies and factory automation (ETFA). IEEE, pp 1–8

    Google Scholar 

  25. Bdiwi M, Rashid A, Pfeifer M et al (2017) Disassembly of unknown models of electrical vehicle motors using innovative human robot cooperation. In: Mutlu B, Tscheligi M (eds) Proceedings of the companion of the 2017 ACM/IEEE international conference on human-robot interaction. ACM, pp 85–86

    Google Scholar 

  26. Sadik AR, Urban B, Adel O (2017) Using hand gestures to interact with an industrial robot in a cooperative flexible manufacturing scenario. In: Proceedings of the 3rd international conference on mechatronics and robotics engineering: ICMRE 2017. ACM, pp 11–16

    Google Scholar 

  27. Hevner AR, March S, Park J et al (2004) Design science in information systems research. MIS Q 28(1):75–106

    Article  Google Scholar 

  28. Schou C, Damgaard JS, Bogh S et al. (2013) Human-robot interface for instructing industrial tasks using kinesthetic teaching. In: Proceedings of the 2013 44th international symposium on robotics (ISR). IEEE, pp 1–6

    Google Scholar 

  29. Alexandrova S, Tatlock Z, Cakmak M (2015) RoboFlow: a flow-based visual programming language for mobile manipulation tasks. In: IEEE Proceedings of the 2015 IEEE international conference on robotics and automation (ICRA). IEEE, Piscataway, pp 5537–5544

    Google Scholar 

  30. Pedersen MR, Nalpantidis L, Andersen RS et al (2016) Robot skills for manufacturing: from concept to industrial deployment. Robot Comput Integr Manuf 37:282–291. https://doi.org/10.1016/j.rcim.2015.04.002

    Article  Google Scholar 

  31. Deutsche Akkreditierungsstelle GmbH (2010) Leitfaden Usability: Gestaltungsrahmen für den Usability-Engineering-Prozess

    Google Scholar 

  32. Glaser BG, Strauss AL (1967) The discovery of grounded theory: strategies for qualitative research. Observations. Aldine Pub. Co., Chicago

    Google Scholar 

  33. Roser T, Samson A, Valdivieso EC (2009) Co-creation: new pathways to value. An overview. Promise, London

    Google Scholar 

  34. Brooke J (1996) SUS: a quick and dirty Usability Scale. In: Jordan PW (ed) Usability evaluation in industry. Taylor & Francis, London, pp 189–194

    Google Scholar 

  35. Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Adv Psychol 52:139–183. https://doi.org/10.1016/s0166-4115(08)62386-9

    Article  Google Scholar 

  36. Laugwitz B, Held T, Schrepp M (2008) Construction and evaluation of a user experience questionnaire. In: Holzinger A (ed) USAB 2008, vol 5298. LNCS. Springer, Heidelberg, pp 63–76. https://doi.org/10.1007/978-3-540-89350-9_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Schleicher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schleicher, T., Bullinger, A.C. (2019). Assistive Robots in Highly Flexible Automotive Manufacturing Processes. In: Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y. (eds) Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018). IEA 2018. Advances in Intelligent Systems and Computing, vol 825. Springer, Cham. https://doi.org/10.1007/978-3-319-96068-5_23

Download citation

Publish with us

Policies and ethics