Virtual Aging – Implementation of Age-Related Human Performance Factors in Ergonomic Vehicle Design Using the Digital Human Model RAMSIS

  • Hans-Joachim WirschingEmail author
  • Michael Spitzhirn
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 826)


For user centered product design the application of digital human models has been widely established in automotive industry. These models are used to optimize the vehicle ergonomics in an early phase of the CAD design.

The integrated human behavior models are based on experimental data of healthy average age people in general. Hence these models cannot be used to develop ergonomic human machine interfaces that are also suitable for ageing customers. Applying the current digital human engineering process to elderly occupants, however, is a requirement gaining importance with the demographic change in industrial countries.

In order to fulfil this requirement, the most important human engineering applications of the digital human model RAMSIS were extended to take age-related human performance changes into account. A comprehensive literature review the research was conducted about age-related vision limits, acuity, glance eversion time, joint angle limits as well as joint strength over age.

The results were transferred to the RAMSIS human model to extend the simulation database. The enlarged simulation database facilitates applying the current human engineering applications of RAMSIS to occupants with age-related restrictions.

The differences in simulation results of different age groups were analyzed with respect to relevance and significance in the ergonomic vehicle development process. The automotive test use cases were set up for the criteria posture, reachability, force effort and visibility for occupant models in a vehicle model. The simulation results differ significantly between the age groups.

Hence, the extended simulation methods of RAMSIS support human engineering applications for age-based automotive product planning.


Aging Digital human model Vehicle ergonomics Virtual aging 



The article would have been impossible without the support of the German Federal Ministry of Education and Research (Project: VirtualAging, FKZ: 01IS15002C) from 01.05.2015 to 31.10.2017.


  1. 1.
    Bandy WD, Berryman Reese N (2010) Joint range of motion and muscle length testing. SaundersGoogle Scholar
  2. 2.
    BMWi (2010) Wirtschaftsfaktor Alter - Eine Initiative des BMWi und des BMFSFJ. Demographischer Wandel: Perspektiven für Anbieter und Märkte ausloten. Wirtschaftsfaktor Alter, Faktenblatt 1.,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf
  3. 3.
    Bubb H, Bengler K, Grünen RE, Vollrath M (2015) Automobilergonomie. Springer Fachmedien, WiesbadenCrossRefGoogle Scholar
  4. 4.
    Bullinger-Hoffmann AC, Mühlstedt J (2017) Homo sapiens digitalis - virtuelle ergonomie und digitale menschmodelle. Springer, HeidelbergGoogle Scholar
  5. 5.
    ISO 22411:2008 - Ergonomics data and guidelines for the application of ISO/IEC Guide 71 to products and services to address the needs of older persons and persons with disabilitiesGoogle Scholar
  6. 6.
    Huaman AG, Sharpe JA Vertical saccades in senescence. Invest Ophthalmol Vis Sci 34: 2588–2595Google Scholar
  7. 7.
    Kaminsky LA (2014) ACSM’s health-related physical fitness assessment manual. 4th edn American College of Sports Medicine, BaltimoreGoogle Scholar
  8. 8.
    Kapandji IA (1970) The physiology of the joints. Churchill Livingstone, New YorkGoogle Scholar
  9. 9.
    NHTSA (2013) Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices. FR 04232013Google Scholar
  10. 10.
    Purucker C, Naujoks F, Prill A, Krause T, Neukum A (2014) Vorhersage von Blickabwendungszeiten mit Keystroke-Level-Modeling. Mensch und ComputerGoogle Scholar
  11. 11.
    Schlick C, Bruder R, Luczak H (2010) Arbeitswissenschaft. Springer, HeidelbergCrossRefGoogle Scholar
  12. 12.
    Seidl A, Bubb H (2006) Standards in anthropometry, handbook on standards and guidelines in ergonomics and human factors. Lawrence Erlbaum AssociatesGoogle Scholar
  13. 13.
    Seitz T et al (2005) FOCOPP - an approach for a human posture prediction model using internal/external forces and discomfort. SAE digital human modelling conference 2005, Paper 2005-01-2694Google Scholar
  14. 14.
    Spirduso W, Francis K, MacRae PG (2005) Physical dimensions of aging. 2nd edn Human kinetics, Champaign IllinoisGoogle Scholar
  15. 15.
    Spitzhirn M (2017) Integration altersbedingter Veränderung der Beweglichkeit zur altersgerechten Arbeitsprozessgestaltung in digitalen Menschmodellen. In: Gesellschaft für Arbeitswissenschaft EV (eds) Soziotechnische Gestaltung des digitalen Wandels, 63. Kongress der Gesellschaft für Arbeitswissenschaft, pp 1–6. GfA-Press, DortmundGoogle Scholar
  16. 16.
    Spitzhirn M, Bullinger AC (2016) Entwicklung eines Konzepts zur altersgerechten Arbeitsgestaltung mittels digitaler Menschmodelle. In: Müller E (eds) Smarte fabrik & smarte arbeit - industrie 4.0 gewinnt Kontur. VPP 2016 Vernetzt planen und produzieren. Wissenschaftliche Schriftenreihe des IBF. Sonderheft 22Google Scholar
  17. 17.
    Spitzhirn M, Bullinger AC (2018) Kritische Reflexion zu verschiedenen Datenquellen zu altersbedingten Veränderungen der Beweglichkeit. In: Gesellschaft für Arbeitswissenschaft EV (eds) ARBEIT(S).WISSEN.SCHAF(F)T - Grundlage für Management & Kompetenzentwicklung, 64. Kongress der GfA, pp 1–6. GfA-Press, DortmundGoogle Scholar
  18. 18.
    Spitzhirn M, Kaiser A, Bullinger AC (2016) Virtual Aging - Nutzerbefragung zu Anforderungen und Bedarf zur Integration altersspezifischer Veränderungen des Menschen in digitale Menschmodelle. In: Bullinger (eds) 3D SENSATION, innteract conference, pp 238–252, aw&I-Verlag, ChemnitzGoogle Scholar
  19. 19.
    Stoll T, Huber E, Seifert B, Michel BA, Stucki G (2000) Maximal isometric muscle strength: normative values and gender-specific relation to age. Clin Rheumatol 19:105–113CrossRefGoogle Scholar
  20. 20.
    Temme L, Morris A (1989) Speed of accommodation and age. Optom Vis Sci 66(2):106–112CrossRefGoogle Scholar
  21. 21.
    Trieb R, Seidl A, Rissiek A, Wirsching H-J (2008) Weltweite anthropometrische Reihen-messungen mit BodyScanning – Überblick über die wichtigsten Projekte, Verfahren und Ergebnisse. Konferenz der Gesellschaft für Arbeitswissenschaften (GfA), MünchenGoogle Scholar
  22. 22.
    Van der Meulen P, Seidl A (2007) Ramsis – the leading cad tool for ergonomic analysis of vehicles. digital human modeling. Lecture Notes in Computer Science, vol 4561, pp 1008–1017Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Human SolutionsKaiserslauternGermany
  2. 2.Chair of Ergonomics and Innovation ManagementChemnitz University of TechnologyChemnitzGermany

Personalised recommendations