Skip to main content

Cerebral Venous System and Implications in Neurosurgery

  • 435 Accesses

Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

The cerebral venous system is a vital component of cerebral circulation. However, the anatomy and physiological function has not been thoroughly understood. We reviewed the anatomic features and physiological function of certain cerebral venous structures based on experimental and surgical experiences, and trying to provide some notes for neurosurgeons on evaluating and managing cerebral venous structures during open cranial surgery and some clues for function study as well.

Keywords

  • Cerebral veins
  • Anatomy
  • Physiology
  • Neurosurgery

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-96053-1_7
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-96053-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)

References

  1. Kaplan HA, Browder A, Browder J. Naasal venous drainage and the foramen caecum. Laryngoscope. 1973;83(3):327–9.

    CAS  CrossRef  PubMed  Google Scholar 

  2. Matsushima T, Rhoton AJ, de Oliveira E, et al. Microsurgical anatomy of the veins of the posterior fossa. J Neurosurg. 1983;59(1):63–105.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Durgun B, Ilglt ET, Cizmeli MO, et al. Evaluation by angiography of the lateral dominance of the drainage of the dural venous sinuses. Surg Radiol Anat. 1993;15(2):125–30.

    CAS  CrossRef  PubMed  Google Scholar 

  4. Bono F, Lupo MR, Lavano A, et al. Cerebral MR venography of transverse sinuses in subjects with normal CSF pressure. Neurology. 2003;61(9):1267–70.

    CAS  CrossRef  PubMed  Google Scholar 

  5. Parkinson D. Surgical anatomy of the lateral sellar compartment (cavernous sinus). Clin Neurosurg. 1990;36:219–39.

    CAS  PubMed  Google Scholar 

  6. Day JD, Kellogg JX, Tschabitscher M, et al. Surface and superficial surgical anatomy of the posterolateral cranial base: significance for surgical planning and approach. Neurosurgery. 1996;38(6):1079–83; discussion 1083-1084.

    CAS  PubMed  Google Scholar 

  7. Rhoton AJ. The cerebral veins. Neurosurgery. 2002;51(4 Suppl):S159–205.

    PubMed  Google Scholar 

  8. Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Brain Res Rev. 2004;46(3):243–60.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Sampei T, Yasui N, Okudera T, et al. Anatomic study of anterior frontal cortical bridging veins with special reference to the frontopolar vein. Neurosurgery. 1996;38(5):971–5.

    CAS  CrossRef  PubMed  Google Scholar 

  10. Sakata K, Al-Mefty O, Yamamoto I. Venous consideration in petrosal approach: microsurgical anatomy of the temporal bridging vein. Neurosurgery. 2000;47(1):153–60; discussion 160-161.

    CAS  PubMed  Google Scholar 

  11. Blumenthal I. Shaken baby syndrome. Postgrad Med J. 2002;78(926):732–5.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Delye H, Goffin J, Verschueren P, et al. Biomechanical properties of the superior sagittal sinus-bridging vein complex. Stapp Car Crash J. 2006;50:625–36.

    PubMed  Google Scholar 

  13. Ehrlich E, Maxeiner H, Lange J. Postmortem radiological investigation of bridging vein ruptures. Leg Med (Tokyo). 2003;5(Suppl 1):S225–7.

    CrossRef  Google Scholar 

  14. Aryan HE, Ozgur BM, Jandial R, et al. Complications of interhemispheric transcallosal approach in children: review of 15 years experience. Clin Neurol Neurosurg. 2006;108(8):790–3.

    CrossRef  PubMed  Google Scholar 

  15. Chaynes P. Microsurgical anatomy of the great cerebral vein of Galen and its tributaries. J Neurosurg. 2003;99(6):1028–38.

    CrossRef  PubMed  Google Scholar 

  16. Browder J, Kaplan HA, Krieger AJ. Anatomical features of the straight sinus and its tributaries. J Neurosurg. 1976;44(1):55–61.

    CAS  CrossRef  PubMed  Google Scholar 

  17. Carmel PW. Tumours of the third ventricle. Acta Neurochir. 1985;75(1-4):136–46.

    CAS  CrossRef  PubMed  Google Scholar 

  18. Elhammady MS, Heros RC. Cerebral veins: to sacrifice or not to sacrifice, that is the question. World Neurosurg. 2015;83(3):320–4.

    CrossRef  PubMed  Google Scholar 

  19. Nakase H, Shin Y, Nakagawa I, et al. Clinical features of postoperative cerebral venous infarction. Acta Neurochir. 2005;147(6):621–6; discussion 626.

    CAS  CrossRef  PubMed  Google Scholar 

  20. Mclaughlin MR, Jannetta PJ, Clyde BL, et al. Microvascular decompression of cranial nerves: lessons learned after 4400 operations. J Neurosurg. 1999;90(1):1–8.

    CAS  CrossRef  PubMed  Google Scholar 

  21. Barker FN, Jannetta PJ, Bissonette DJ, et al. The long-term outcome of microvascular decompression for trigeminal neuralgia. N Engl J Med. 1996;334(17):1077–83.

    CrossRef  PubMed  Google Scholar 

  22. Distelmaier P. [Complications of the operative neurosurgical treatment of trigeminal neuralgia]. Zentralbl Neurochir. 1976;37(2):119–25.

    Google Scholar 

  23. Ryu H, Yamamoto S, Sugiyama K, et al. Neurovascular decompression for trigeminal neuralgia in elderly patients. Neurol Med Chir (Tokyo). 1999;39(3):226–9. discussion 229–30.

    CAS  CrossRef  Google Scholar 

  24. Singh D, Jagetia A, Sinha S. Brain stem infarction: a complication of microvascular decompression for trigeminal neuralgia. Neurol India. 2006;54(3):325–6.

    CrossRef  PubMed  Google Scholar 

  25. Koerbel A, Gharabaghi A, Safavi-Abbasi S, et al. Venous complications following petrosal vein sectioning in surgery of petrous apex meningiomas. Eur J Surg Oncol. 2009;35(7):773–9.

    CAS  CrossRef  PubMed  Google Scholar 

  26. Matsushima K, Matsushima T, Kuga Y, et al. Classification of the superior petrosal veins and sinus based on drainage pattern. Neurosurgery. 2014;10(Suppl 2):357–367, 367.

    CrossRef  PubMed  Google Scholar 

  27. Oakes WJ. Venous infarction. J Neurosurg Pediatr. 2011;7(3):223; discussion 223.

    CrossRef  PubMed  Google Scholar 

  28. Mccomb JG. What is the risk of venous infarction to intra-operative sacrifice of either the superficial or deep cerebral bridging veins? Childs Nerv Syst. 2014;30(5):811–3.

    CrossRef  PubMed  Google Scholar 

  29. Mcnatt SA, Sosa IJ, Krieger MD, et al. Incidence of venous infarction after sacrificing middle-third superior sagittal sinus cortical bridging veins in a pediatric population. J Neurosurg Pediatr. 2011;7(3):224–8.

    CrossRef  PubMed  Google Scholar 

  30. Davidson L, Krieger MD, Mccomb JG. Posterior interhemispheric retrocallosal approach to pineal region and posterior fossa lesions in a pediatric population. J Neurosurg Pediatr. 2011;7(5):527–33.

    CrossRef  PubMed  Google Scholar 

  31. Davidson L, Mccomb JG. The safety of the intraoperative sacrifice of the deep cerebral veins. Childs Nerv Syst. 2013;29(2):199–207.

    CrossRef  PubMed  Google Scholar 

  32. Sindou M, Hallacq P. Venous reconstruction in surgery of meningiomas invading the sagittal and transverse sinuses. Skull Base Surg. 1998;8(2):57–64.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Sindou M. Meningiomas invading the sagittal or transverse sinuses, resection with venous reconstruction. J Clin Neurosci. 2001;8(Suppl 1):8–11.

    CrossRef  PubMed  Google Scholar 

  34. Sindou M, Auque J. The intracranial venous system as a neurosurgeon’s perspective. Adv Tech Stand Neurosurg. 2000;26:131–216.

    CAS  CrossRef  PubMed  Google Scholar 

  35. Kanno T, Kasama A, Shoda M, et al. A pitfall in the interhemispheric translamina terminalis approach for the removal of a craniopharyngioma. Significance of preserving draining veins. Part I. Clinical study. Surg Neurol. 1989;32(2):111–5.

    CAS  CrossRef  PubMed  Google Scholar 

  36. Kasama A, Kanno T. A pitfall in the interhemispheric translamina terminalis approach for the removal of a craniopharyngioma. Significance of preserving draining veins. Part II. Experimental study. Surg Neurol. 1989;32(2):116–20.

    CAS  CrossRef  PubMed  Google Scholar 

  37. Takao T, Kouguchi M, Nakahara Y, et al. [Three-dimensional images of petrosal veins for preoperative evaluation: four case reports]. No Shinkei Geka. 2011;39(12):1175–81.

    Google Scholar 

  38. Kaku S, Miyahara K, Fujitsu K, et al. Drainage pathway of the superior petrosal vein evaluated by CT venography in petroclival meningioma surgery. J Neurol Surg B Skull Base. 2012;73(5):316–20.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Koerbel A, Wolf SA, Kiss A. Peduncular hallucinosis after sacrifice of veins of the petrosal venous complex for trigeminal neuralgia. Acta Neurochir. 2007;149(8):831–2; discussion 832-833.

    CAS  CrossRef  PubMed  Google Scholar 

  40. Chen HJ, Lui CC. Peduncular hallucinosis following microvascular decompression for trigeminal neuralgia: report of a case. J Formos Med Assoc. 1995;94(8):503–5.

    CAS  PubMed  Google Scholar 

  41. Tsukamoto H, Matsushima T, Fujiwara S, et al. Peduncular hallucinosis following microvascular decompression for trigeminal neuralgia: case report. Surg Neurol. 1993;40(1):31–4.

    CAS  CrossRef  PubMed  Google Scholar 

  42. Gharabaghi A, Koerbel A, Lowenheim H, et al. The impact of petrosal vein preservation on postoperative auditory function in surgery of petrous apex meningiomas. Neurosurgery. 2006;59(1 Suppl 1):S68–74; discussion S68-S74.

    Google Scholar 

  43. Xi J, Ding X, Peng Z, et al. [Protection of the superior petrosal vein in microneurosurgery for acoustic neuroma]. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2013;38(7):695–8.

    Google Scholar 

  44. Sugita K, Kobayashi S, Yokoo A. Preservation of large bridging veins during brain retraction. Technical note. J Neurosurg. 1982;57(6):856–8.

    CAS  CrossRef  PubMed  Google Scholar 

  45. Morita A, Sekhar LN. Reconstruction of the vein of Labbe by using a short saphenous vein bypass graft. Technical note. J Neurosurg. 1998;89(4):671–5.

    CAS  CrossRef  PubMed  Google Scholar 

  46. Sekhar LN, Tzortzidis FN, Bejjani GK, et al. Saphenous vein graft bypass of the sigmoid sinus and jugular bulb during the removal of glomus jugulare tumors. Report of two cases. J Neurosurg. 1997;86(6):1036–41.

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Wen, W., Huang, Q. (2019). Cerebral Venous System and Implications in Neurosurgery. In: , et al. Cerebral Venous System in Acute and Chronic Brain Injuries. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-96053-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96053-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96052-4

  • Online ISBN: 978-3-319-96053-1

  • eBook Packages: MedicineMedicine (R0)