Skip to main content

Cerebral Venous Collateral Circulation

  • 476 Accesses

Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

For a long time, the cerebral venous collateral has been far less concerned than arterial counterparts. It is not until latter part of twentieth century, has adequate venous schematic description been provided. In this chapter, we compared the traditional classification the cerebral venous system, and proposed a novel cerebral venous collateral circulation system attributed to the new findings in cerebral diseases.

Keywords

  • Cerebral veins
  • Collateral circulation
  • Venous regulation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-96053-1_5
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-96053-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3

References

  1. Liebeskind DS. Collateral circulation. Stroke. 2003;34(9):2279–84.

    CrossRef  Google Scholar 

  2. Andeweg J. The anatomy of collateral venous flow from the brain and its value in aetiological interpretation of intracranial pathology. Neuroradiology. 1996;38(7):621–8.

    CAS  CrossRef  Google Scholar 

  3. Andeweg J. Consequences of the anatomy of deep venous outflow from the brain. Neuroradiology. 1999;41(4):233–41.

    CAS  CrossRef  Google Scholar 

  4. Kilic T, Akakin A. Anatomy of cerebral veins and sinuses. Front Neurol Neurosci. 2008;23:4–15.

    CrossRef  Google Scholar 

  5. Rhoton AL Jr. The cerebral veins. Neurosurgery. 2002;51(4 Suppl):S159–205.

    PubMed  Google Scholar 

  6. Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Brain Res Rev. 2004;46(3):243–60.

    CAS  CrossRef  Google Scholar 

  7. Cullen S, Demengie F, Ozanne A, Alvarez H, Mercier PH, Brassier G, et al. The anastomotic venous circle of the base of the brain. Interv Neuroradiol. 2005;11(4):325–32.

    CAS  CrossRef  Google Scholar 

  8. Schmidek HH, Auer LM, Kapp JP. The cerebral venous system. Neurosurgery. 1985;17(4):663–78.

    CAS  CrossRef  Google Scholar 

  9. Qureshi AI. A classification scheme for assessing recanalization and collateral formation following cerebral venous thrombosis. J Vasc Interv Neurol. 2010;3(1):1–2.

    PubMed  PubMed Central  Google Scholar 

  10. Ferro JM, Bacelar-Nicolau H, Rodrigues T, Bacelar-Nicolau L, Canhao P, Crassard I, et al. Risk score to predict the outcome of patients with cerebral vein and dural sinus thrombosis. Cerebrovasc Dis. 2009;28(1):39–44.

    CrossRef  Google Scholar 

  11. Vollono C, Tartaglione T, Della Marca G. Teaching neuroimages: chronic sinus thrombosis with patency of occipital and falcine cerebral venous sinuses. Neurology. 2016;87(6):e58–9.

    PubMed  Google Scholar 

  12. Munuera J, Blasco G, Hernandez-Perez M, Daunis IEP. Venous imaging-based biomarkers in acute ischaemic stroke. J Neurol Neurosurg Psychiatry. 2017;88(1):62–9.

    CrossRef  Google Scholar 

  13. Padget DH. The cranial venous system in man in reference to development, adult configuration, and relation to the arteries. Am J Anat. 1956;98(3):307–55.

    CAS  CrossRef  Google Scholar 

  14. Gustafsson O, Rossitti S. Intracranial pressure is a fraction of arterial blood pressure. Eur J Neurol. 1995;2(1):31–7.

    CAS  CrossRef  Google Scholar 

  15. Heistad DD, Marcus ML, Said SI, Gross PM. Effect of acetylcholine and vasoactive intestinal peptide on cerebral blood flow. Am J Phys. 1980;239(1):H73–80.

    CAS  Google Scholar 

  16. Hassler O. Deep cerebral venous system in man. A microangiographic study on its areas of drainage and its anastomoses with the superficial cerebral veins. Neurology. 1966;16(5):505–11.

    CAS  CrossRef  Google Scholar 

  17. Yu X, Yuan L. Prominence of medullary veins on susceptibility-weighted images provides prognostic information in patients with subacute stroke. AJNR Am J Neuroradiol. 2016;37(3):423–9.

    CAS  CrossRef  Google Scholar 

  18. Liebeskind DS. Collateral perfusion: time for novel paradigms in cerebral ischemia. Int J Stroke. 2012;7(4):309–10.

    CrossRef  Google Scholar 

  19. Liebeskind DS, Feldmann E. Imaging of cerebrovascular disorders: precision medicine and the collaterome. Ann N Y Acad Sci. 2016;1366:40.

    CrossRef  Google Scholar 

  20. Liebeskind DS, Tomsick TA, Foster LD, Yeatts SD, Carrozzella J, Demchuk AM, et al. Collaterals at angiography and outcomes in the Interventional Management of Stroke (IMS) III trial. Stroke. 2014;45(3):759–64.

    CAS  CrossRef  Google Scholar 

  21. Pomschar A, Koerte I, Lee S, Laubender RP, Straube A, Heinen F, et al. MRI evidence for altered venous drainage and intracranial compliance in mild traumatic brain injury. PLoS One. 2013;8(2):e55447.

    CAS  CrossRef  Google Scholar 

  22. Farrar MJ, Rubin JD, Diago DM, Schaffer CB. Characterization of blood flow in the mouse dorsal spinal venous system before and after dorsal spinal vein occlusion. J Cereb Blood Flow Metab. 2015;35(4):667–75.

    CrossRef  Google Scholar 

  23. Chung CP, Wang PN, Wu YH, Tsao YC, Sheng WY, Lin KN, et al. More severe white matter changes in the elderly with jugular venous reflux. Ann Neurol. 2011;69(3):553–9.

    CrossRef  Google Scholar 

  24. Sethi SK, Utriainen DT, Daugherty AM, Feng W, Hewett JJ, Raz N, et al. Jugular venous flow abnormalities in multiple sclerosis patients compared to normal controls. J Neuroimaging. 2015;25(4):600–7.

    CrossRef  Google Scholar 

  25. Kaplan HA. Collateral circulation of the brain. Neurology. 1961;11(4 Pt 2):9–15.

    CrossRef  Google Scholar 

  26. Luce JM, Huseby JS, Kirk W, Butler JA. Starling resistor regulates cerebral venous outflow in dogs. J Appl Physiol Respir Environ Exerc Physiol. 1982;53(6):1496–503.

    CAS  PubMed  Google Scholar 

  27. Adamson RH, Sarai RK, Altangerel A, Clark JF, Weinbaum S, Curry FE. Microvascular permeability to water is independent of shear stress, but dependent on flow direction. Am J Physiol Heart Circ Physiol. 2013;304(8):H1077–84.

    CAS  CrossRef  Google Scholar 

  28. Faber JE, Chilian WM, Deindl E, van Royen N, Simons M. A brief etymology of the collateral circulation. Arterioscler Thromb Vasc Biol. 2014;34(9):1854–9.

    CAS  CrossRef  Google Scholar 

  29. Sbarbati A, Pietra C, Baldassarri AM, Guerrini U, Ziviani L, Reggiani A, et al. The microvascular system in ischemic cortical lesions. Acta Neuropathol. 1996;92(1):56–63.

    CAS  CrossRef  Google Scholar 

  30. Knowlton FP, Starling EH. The influence of variations in temperature and blood-pressure on the performance of the isolated mammalian heart. J Physiol. 1912;44(3):206–19.

    CAS  CrossRef  Google Scholar 

  31. Lofgren J. Effects of variations in arterial pressure and arterial carbon dioxide tension on the cerebrospinal fluid pressure-volume relationships. Acta Neurol Scand. 1973;49(5):586–98.

    CAS  CrossRef  Google Scholar 

  32. Hallenbeck JM, Bradley ME. Experimental model for systematic study of impaired microvascular reperfusion. Stroke. 1977;8(2):238–43.

    CAS  CrossRef  Google Scholar 

  33. Permutt S, Riley RL. Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol. 1963;18:924–32.

    CAS  CrossRef  Google Scholar 

  34. Johnston IH, Rowan JO. Raised intracranial pressure and cerebral blood flow. 3. Venous outflow tract pressures and vascular resistances in experimental intracranial hypertension. J Neurol Neurosurg Psychiatry. 1974;37(4):392–402.

    CAS  CrossRef  Google Scholar 

  35. Yada K, Nakagawa Y, Tsuru M. Circulatory disturbance of the venous system during experimental intracranial hypertension. J Neurosurg. 1973;39(6):723–9.

    CAS  CrossRef  Google Scholar 

  36. Yamashima T, Friede RL. Why do bridging veins rupture into the virtual subdural space? J Neurol Neurosurg Psychiatry. 1984;47(2):121–7.

    CAS  CrossRef  Google Scholar 

  37. Magder S. Starling resistor versus compliance. Which explains the zero-flow pressure of a dynamic arterial pressure-flow relation? Circ Res. 1990;67(1):209–20.

    CAS  CrossRef  Google Scholar 

  38. Rossitti S. Pathophysiology of increased cerebrospinal fluid pressure associated to brain arteriovenous malformations: the hydraulic hypothesis. Surg Neurol Int. 2013;4:42.

    CrossRef  Google Scholar 

  39. Chen J, Wang XM, Luan LM, Chao BT, Pang B, Song H, et al. Biological characteristics of the cerebral venous system and its hemodynamic response to intracranial hypertension. Chin Med J. 2012;125(7):1303–9.

    PubMed  Google Scholar 

  40. Si Z, Luan L, Kong D, Zhao G, Wang H, Zhang K, et al. MRI-based investigation on outflow segment of cerebral venous system under increased ICP condition. Eur J Med Res. 2008;13(3):121–6.

    CAS  PubMed  Google Scholar 

  41. Chen S, Chen Y, Xu L, Matei N, Tang J, Feng H, et al. Venous system in acute brain injury: mechanisms of pathophysiological change and function. Exp Neurol. 2015;272:4.

    CAS  CrossRef  Google Scholar 

  42. Kulik T, Kusano Y, Aronhime S, Sandler AL, Winn HR. Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology. 2008;55(3):281–8.

    CAS  CrossRef  Google Scholar 

  43. Edvinsson L, Hogestatt ED, Uddman R, Auer LM. Cerebral veins: fluorescence histochemistry, electron microscopy, and in vitro reactivity. J Cereb Blood Flow Metab. 1983;3(2):226–30.

    CAS  CrossRef  Google Scholar 

  44. Mayhan WG, Werber AH, Heistad DD. Protection of cerebral vessels by sympathetic nerves and vascular hypertrophy. Circulation. 1987;75(1 Pt 2):I107–12.

    CAS  PubMed  Google Scholar 

  45. Ushiwata I, Ushiki T. Cytoarchitecture of the smooth muscles and pericytes of rat cerebral blood vessels. A scanning electron microscopic study. J Neurosurg. 1990;73(1):82–90.

    CAS  CrossRef  Google Scholar 

  46. Auer LM, Trummer UG, Johansson BB. Alpha-adrenoreceptor antagonists and pial vessel diameter during hypercapnia and hemorrhagic hypotension in the cat. Stroke. 1981;12(6):847–51.

    CAS  CrossRef  Google Scholar 

  47. Auer LM, Johansson BB. Cervical sympathetic nerve stimulation decreases intracranial pressure in the cat. Acta Physiol Scand. 1981;113(4):565–6.

    CAS  CrossRef  Google Scholar 

  48. Mayhan WG, Heistad DD. Role of veins and cerebral venous pressure in disruption of the blood-brain barrier. Circ Res. 1986;59(2):216–20.

    CAS  CrossRef  Google Scholar 

  49. Min KJ, Yoon SH, Kang JK. New understanding of the role of cerebrospinal fluid: offsetting of arterial and brain pulsation and self-dissipation of cerebrospinal fluid pulsatile flow energy. Med Hypotheses. 2011;76(6):884–6.

    CrossRef  Google Scholar 

  50. Ambarki K, Baledent O, Kongolo G, Bouzerar R, Fall S, Meyer ME. A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers. IEEE Trans Biomed Eng. 2007;54(3):483–91.

    CrossRef  Google Scholar 

  51. Beggs CB. Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis. BMC Med. 2013;11:142.

    CrossRef  Google Scholar 

  52. Bateman GA, Levi CR, Schofield P, Wang Y, Lovett EC. The venous manifestations of pulse wave encephalopathy: windkessel dysfunction in normal aging and senile dementia. Neuroradiology. 2008;50(6):491–7.

    CrossRef  Google Scholar 

  53. Sekhar LN, Chanda A, Morita A. The preservation and reconstruction of cerebral veins and sinuses. J Clin Neurosci. 2002;9(4):391–9.

    CrossRef  Google Scholar 

  54. Ferroli P, Nakaji P, Acerbi F, Albanese E, Broggi G. Indocyanine green (ICG) temporary clipping test to assess collateral circulation before venous sacrifice. World Neurosurg. 2011;75(1):122–5.

    CrossRef  Google Scholar 

  55. Asgari S, Bassiouni H, Hunold A, Klassen D, Stolke D, Sandalcioglu IE. Extensive brain swelling with neurological deterioration after intracranial meningioma surgery—venous complication or ‘unspecific’ increase in tissue permeability. Zentralbl Neurochir. 2008;69(1):22–9.

    CAS  CrossRef  Google Scholar 

  56. Higgins JN, Burnet NG, Schwindack CF, Waters A. Severe brain edema caused by a meningioma obstructing cerebral venous outflow and treated with venous sinus stenting. Case report. J Neurosurg. 2008;108(2):372–6.

    CrossRef  Google Scholar 

  57. Rost NS. Stroke: more than meets the eye[mdash]big consequences of small strokes. Nat Rev Neurol. 2015;11(5):249–50.

    CrossRef  Google Scholar 

  58. van der Veen PH, Muller M, Vincken KL, Hendrikse J, Mali WP, van der Graaf Y, et al. Longitudinal relationship between cerebral small-vessel disease and cerebral blood flow: the second manifestations of arterial disease-magnetic resonance study. Stroke. 2015;46(5):1233–8.

    CrossRef  Google Scholar 

  59. Black S, Gao F, Bilbao J. Understanding white matter disease: imaging-pathological correlations in vascular cognitive impairment. Stroke. 2009;40(3 Suppl):S48–52.

    CrossRef  Google Scholar 

  60. Yan S, Wan J, Zhang X, Tong L, Zhao S, Sun J, et al. Increased visibility of deep medullary veins in leukoaraiosis: a 3-T MRI study. Front Aging Neurosci. 2014;6:144.

    CrossRef  Google Scholar 

  61. Tateishi Y, Wisco D, Aoki J, George P, Katzan I, Toth G, et al. Large deep white matter lesions may predict futile recanalization in endovascular therapy for acute ischemic stroke. Interv Neurol. 2015;3(1):48–55.

    CrossRef  Google Scholar 

  62. Zivadinov R, Chung CP. Potential involvement of the extracranial venous system in central nervous system disorders and aging. BMC Med. 2013;11:260.

    CrossRef  Google Scholar 

  63. Han K, Chao AC, Chang FC, Hsu HY, Chung CP, Sheng WY, et al. Diagnosis of transverse sinus hypoplasia in magnetic resonance venography: new insights based on magnetic resonance imaging in combined dataset of venous outflow impairment case-control studies: post hoc case-control study. Medicine. 2016;95(10):e2862.

    CrossRef  Google Scholar 

  64. Muir KW, Macrae IM. Neuroimaging as a selection tool and endpoint in clinical and pre-clinical trials. Transl Stroke Res. 2016;7(5):368–77.

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Tong, LS., Yu, Yn., Tang, J., Lou, M., Zhang, J.H. (2019). Cerebral Venous Collateral Circulation. In: , et al. Cerebral Venous System in Acute and Chronic Brain Injuries. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-96053-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96053-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96052-4

  • Online ISBN: 978-3-319-96053-1

  • eBook Packages: MedicineMedicine (R0)