Skip to main content

Cerebral Venous Regulation

  • 450 Accesses

Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

The overwhelming emphasis of the cerebrovascular regulation has been on understanding the artery system; few studies, however, have focused on the cerebral venous regulation, consequently, the modes and characteristics of cerebral venous regulation are largely unknown. Because 70–80% of the cerebral blood volume is located in the veins, the regulation of the cerebral venous system is as important as the cerebral artery system, especially in attenuating intracranial pressure, cerebral edema and hemorrhagic transformation. In this article, we will try to prove the presence of cerebral venous regulation from direct and indirect evidence. Furthermore, we analyzed the characteristics of the cerebral venous system from neurovascular coupling, cerebral autoregulation and cerebrovascular reactivity. From previous studies, we have come to the conclusion that the cerebral venous system may also have a vascular regulating function, which relates to the occurrence, development and prognosis of diseases. Like the cerebral arterial system, neurovascular coupling, cerebral autoregulation, and cerebrovascular reactivity can act as three evaluation indexes in cerebral venous regulation. The integrated cerebrovascular regulation, including cerebral arterial regulation and cerebral venous regulation, is a more reasonable method of evaluating cerebrovascular function.

Keywords

  • Cerebral veins
  • Stroke
  • Regulation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-96053-1_4
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-96053-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4

References

  1. McCaslin AF, Chen BR, Radosevich AJ, et al. In vivo 3D morphology of astrocyte-vasculature interactions in the somatosensory cortex: implications for neurovascular coupling. J Cereb Blood Flow Metab. 2011;31(3):795–806.

    CAS  PubMed  CrossRef  Google Scholar 

  2. Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77(3):731–58.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Tan CO, Taylor JA. Integrative physiological and computational approaches to understand autonomic control of cerebral autoregulation. Exp Physiol. 2014;99(1):3–15.

    PubMed  CrossRef  Google Scholar 

  4. Guo ZN, Shao A, Tong LS, et al. The role of nitric oxide and sympathetic control in cerebral autoregulation in the setting of subarachnoid hemorrhage and traumatic brain injury. Mol Neurobiol. 2015;53:3606.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Munoz MF, Puebla M, Figueroa XF. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca(2+) signaling. Front Cell Neurosci. 2015;9:59.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  6. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5(5):347–60.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.

    CAS  PubMed  CrossRef  Google Scholar 

  8. Leybaert L. Neurobarrier coupling in the brain: a partner of neurovascular and neurometabolic coupling? J Cereb Blood Flow Metab. 2005;25(1):2–16.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100(1):328–35.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Newman EA. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 2003;26(10):536–42.

    CAS  PubMed  CrossRef  Google Scholar 

  11. Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003;26(10):523–30.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev. 1998;78(1):53–97.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Golding EM, Marrelli SP, You J, et al. Endothelium-derived hyperpolarizing factor in the brain: a new regulator of cerebral blood flow? Stroke. 2002;33(3):661–3.

    PubMed  CrossRef  Google Scholar 

  14. Busse R, Fleming I. Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol Sci. 2003;24(1):24–9.

    CAS  PubMed  CrossRef  Google Scholar 

  15. Segal SS. Integration of blood flow control to skeletal muscle: key role of feed arteries. Acta Physiol Scand. 2000;168(4):511–8.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Somlyo AP, Wu X, Walker LA, et al. Pharmacomechanical coupling: the role of calcium, G-proteins, kinases and phosphatases. Rev Physiol Biochem Pharmacol. 1999;134:201–34.

    CAS  PubMed  Google Scholar 

  17. Salinet AS, Robinson TG, Panerai RB. Effects of cerebral ischemia on human neurovascular coupling, CO2 reactivity, and dynamic cerebral autoregulation. J Appl Physiol. 2015;118(2):170–7.

    PubMed  CrossRef  Google Scholar 

  18. Lin WH, Hao Q, Rosengarten B, et al. Impaired neurovascular coupling in ischaemic stroke patients with large or small vessel disease. Eur J Neurol. 2011;18(5):731–6.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Koide M, Sukhotinsky I, Ayata C, et al. Subarachnoid hemorrhage, spreading depolarizations and impaired neurovascular coupling. Stroke Res Treat. 2013;2013:819340.

    PubMed  PubMed Central  Google Scholar 

  20. Kotliar KE, Vilser W, Nagel E, et al. Retinal vessel reaction in response to chromatic flickering light. Graefes Arch Clin Exp Ophthalmol. 2004;242(5):377–92.

    PubMed  CrossRef  Google Scholar 

  21. Huber L, Goense J, Kennerley AJ, et al. Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7 T. NeuroImage. 2014;97:349–62.

    PubMed  CrossRef  Google Scholar 

  22. Berwick J, Johnston D, Jones M, et al. Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex. Eur J Neurosci. 2005;22(7):1655–66.

    CAS  PubMed  CrossRef  Google Scholar 

  23. Guo ZN, Liu J, Xing Y, et al. Dynamic cerebral autoregulation is heterogeneous in different subtypes of acute ischemic stroke. PLoS One. 2014;9(3):e93213.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  24. Oeinck M, Neunhoeffer F, Buttler KJ, et al. Dynamic cerebral autoregulation in acute intracerebral hemorrhage. Stroke. 2013;44(10):2722–8.

    PubMed  CrossRef  Google Scholar 

  25. Calviere L, Nasr N, Arnaud C, et al. Prediction of delayed cerebral ischemia after subarachnoid hemorrhage using cerebral blood flow velocities and cerebral autoregulation assessment. Neurocrit Care. 2015;23:253.

    PubMed  CrossRef  Google Scholar 

  26. Budohoski KP, Czosnyka M, Kirkpatrick PJ, et al. Bilateral failure of cerebral autoregulation is related to unfavorable outcome after subarachnoid hemorrhage. Neurocrit Care. 2015;22(1):65–73.

    PubMed  CrossRef  Google Scholar 

  27. Schmidek HH, Auer LM, Kapp JP. The cerebral venous system. Neurosurgery. 1985;17(4):663–78.

    CAS  PubMed  CrossRef  Google Scholar 

  28. Auer LM, Johansson BB, Lund S. Reaction of pial arteries and veins to sympathetic stimulation in the cat. Stroke. 1981;12(4):528–31.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Auer LM, Trummer UG, Johansson BB. Alpha-adrenoreceptor antagonists and pial vessel diameter during hypercapnia and hemorrhagic hypotension in the cat. Stroke. 1981;12(6):847–51.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Edvinsson L, Aubineau P, Owman C, et al. Sympathetic innervation of cerebral arteries: prejunctional supersensitivity to norepinephrine after sympathectomy or cocaine treatment. Stroke. 1975;6(5):525–30.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Hamner JW, Tan CO, Lee K, et al. Sympathetic control of the cerebral vasculature in humans. Stroke. 2010;41(1):102–9.

    CAS  PubMed  CrossRef  Google Scholar 

  32. Auer LM, Edvinsson L, Johansson BB. Effect of sympathetic nerve stimulation and adrenoceptor blockade on pial arterial and venous calibre and on intracranial pressure in the cat. Acta Physiol Scand. 1983;119(3):213–7.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Edvinsson L, McCulloch J, Uddman R. Feline cerebral veins and arteries: comparison of autonomic innervation and vasomotor responses. J Physiol. 1982;325:161–73.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  34. Auer LM, Johansson BB. Pial venous constriction during cervical sympathetic stimulation in the cat. Acta Physiol Scand. 1980;110(2):203–5.

    CAS  PubMed  CrossRef  Google Scholar 

  35. McCulloch J, Edvinsson L, Watt P. Comparison of the effects of potassium and pH on the calibre of cerebral veins and arteries. Pflugers Arch. 1982;393(1):95–8.

    CAS  PubMed  CrossRef  Google Scholar 

  36. Ainslie PN, Murrell C, Peebles K, et al. Early morning impairment in cerebral autoregulation and cerebrovascular CO2 reactivity in healthy humans: relation to endothelial function. Exp Physiol. 2007;92(4):769–77.

    PubMed  CrossRef  Google Scholar 

  37. White RP, Vallance P, Markus HS. Effect of inhibition of nitric oxide synthase on dynamic cerebral autoregulation in humans. Clin Sci (Lond). 2000;99(6):555–60.

    CAS  CrossRef  Google Scholar 

  38. Preckel MP, Leftheriotis G, Ferber C, et al. Effect of nitric oxide blockade on the lower limit of the cortical cerebral autoregulation in pentobarbital-anaesthetized rats. Int J Microcirc Clin Exp. 1996;16(6):277–83.

    CAS  PubMed  CrossRef  Google Scholar 

  39. Carrera E, Lee LK, Giannopoulos S, et al. Cerebrovascular reactivity and cerebral autoregulation in normal subjects. J Neurol Sci. 2009;285(1-2):191–4.

    PubMed  CrossRef  Google Scholar 

  40. Gommer ED, Staals J, van Oostenbrugge RJ, et al. Dynamic cerebral autoregulation and cerebrovascular reactivity: a comparative study in lacunar infarct patients. Physiol Meas. 2008;29(11):1293–303.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Willie CK, MacLeod DB, Smith KJ, et al. The contribution of arterial blood gases in cerebral blood flow regulation and fuel utilization in man at high altitude. J Cereb Blood Flow Metab. 2015;35(5):873–81.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  42. Chen J, Liu J, Xu WH, et al. Impaired dynamic cerebral autoregulation and cerebrovascular reactivity in middle cerebral artery stenosis. PLoS One. 2014;9(2):e88232.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  43. Murakami M, Fujioka S, Hirata Y, et al. Low-dose of statin treatment improves cerebrovascular reactivity in patients with ischemic stroke: single photon emission computed tomography analysis. J Stroke Cerebrovasc Dis. 2008;17(1):16–22.

    PubMed  CrossRef  Google Scholar 

  44. Krainik A, Hund-Georgiadis M, Zysset S, et al. Regional impairment of cerebrovascular reactivity and BOLD signal in adults after stroke. Stroke. 2005;36(6):1146–52.

    PubMed  CrossRef  Google Scholar 

  45. da Costa L, Houlden D, Rubenfeld G, et al. Impaired cerebrovascular reactivity in the early phase of subarachnoid hemorrhage in good clinical grade patients does not predict vasospasm. Acta Neurochir Suppl. 2015;120:249–53.

    PubMed  Google Scholar 

  46. Frontera JA, Rundek T, Schmidt JM, et al. Cerebrovascular reactivity and vasospasm after subarachnoid hemorrhage: a pilot study. Neurology. 2006;66(5):727–9.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Meyer JS, Gotoh F, Takagi Y. Inhalation of oxygen and carbon dioxide gas. Effect on composition of cerebral venous blood. Arch Intern Med. 1967;119(1):4–15.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Klein KU, Glaser M, Reisch R, et al. The effects of arterial carbon dioxide partial pressure and sevoflurane on capillary venous cerebral blood flow and oxygen saturation during craniotomy. Anesth Analg. 2009;109(1):199–204.

    PubMed  CrossRef  Google Scholar 

  49. Bradley RD, Semple SJ, Spencer GT. Rate of change of carbon dioxide tension in arterial blood, jugular venous blood and cisternal cerebrospinal fluid on carbon dioxide administration. J Physiol. 1965;179(3):442–55.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  50. Ainslie PN, Lucas SJ, Fan JL, et al. Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans. J Appl Physiol. 2012;113(7):1058–67.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Jordan J, Shannon JR, Diedrich A, et al. Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans. Hypertension. 2000;36(3):383–8.

    CAS  PubMed  CrossRef  Google Scholar 

  52. Azevedo E, Castro P, Santos R, et al. Autonomic dysfunction affects cerebral neurovascular coupling. Clin Auton Res. 2011;21(6):395–403.

    PubMed  CrossRef  Google Scholar 

  53. Phillips AA, Krassioukov AV, Zheng MM, et al. Neurovascular coupling of the posterior cerebral artery in spinal cord injury: a pilot study. Brain Sci. 2013;3(2):781–9.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  54. Aguado F, Espinosa-Parrilla JF, Carmona MA, et al. Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci. 2002;22(21):9430–44.

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  55. Hamner JW, Tan CO. Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation. Stroke. 2014;45(6):1771–7.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  56. Petersen NH, Ortega-Gutierrez S, Reccius A, et al. Dynamic cerebral autoregulation is transiently impaired for one week after large-vessel acute ischemic stroke. Cerebrovasc Dis. 2015;39(2):144–50.

    PubMed  CrossRef  Google Scholar 

  57. Reinhard M, Schwarzer G, Briel M, et al. Cerebrovascular reactivity predicts stroke in high-grade carotid artery disease. Neurology. 2014;83(16):1424–31.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  58. Winklewski PJ, Radkowski M, Demkow U. Cross-talk between the inflammatory response, sympathetic activation and pulmonary infection in the ischemic stroke. J Neuroinflammation. 2014;11:213.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  59. Muslumanoglu L, Aki S, Turkdogan D, et al. Involvement of sympathetic reflex activity in patients with acute and chronic stroke: a comparison with functional motor capacity. Arch Phys Med Rehabil. 2004;85(3):470–3.

    PubMed  CrossRef  Google Scholar 

  60. Palomares SM, Cipolla MJ. Myogenic tone as a therapeutic target for ischemic stroke. Curr Vasc Pharmacol. 2014;12(6):788–800.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Godinez-Rubi M, Rojas-Mayorquin AE, Ortuno-Sahagun D. Nitric oxide donors as neuroprotective agents after an ischemic stroke-related inflammatory reaction. Oxidative Med Cell Longev. 2013;2013:297357.

    CrossRef  CAS  Google Scholar 

  62. Gelmers HJ. Calcium-channel blockers: effects on cerebral blood flow and potential uses for acute stroke. Am J Cardiol. 1985;55(3):144B–8B.

    CAS  PubMed  CrossRef  Google Scholar 

  63. van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–18.

    PubMed  CrossRef  Google Scholar 

  64. Otite F, Mink S, Tan CO, et al. Impaired cerebral autoregulation is associated with vasospasm and delayed cerebral ischemia in subarachnoid hemorrhage. Stroke. 2014;45(3):677–82.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  65. Koide M, Bonev AD, Nelson MT, et al. Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels. Proc Natl Acad Sci U S A. 2012;109(21):E1387–95.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  66. Koide M, Bonev AD, Nelson MT, et al. Subarachnoid blood converts neurally evoked vasodilation to vasoconstriction in rat brain cortex. Acta Neurochir Suppl. 2013;115:167–71.

    PubMed  PubMed Central  Google Scholar 

  67. Aries MJ, de Jong SF, van Dijk JM, et al. Observation of autoregulation indices during ventricular CSF drainage after aneurysmal subarachnoid hemorrhage: a pilot study. Neurocrit Care. 2015;23:347.

    PubMed  CrossRef  Google Scholar 

  68. Dankbaar JW, Rijsdijk M, van der Schaaf IC, et al. Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology. 2009;51(12):813–9.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  69. Sabri M, Ai J, Knight B, et al. Uncoupling of endothelial nitric oxide synthase after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2011;31(1):190–9.

    CAS  PubMed  CrossRef  Google Scholar 

  70. Moussouttas M, Lai EW, Huynh TT, et al. Association between acute sympathetic response, early onset vasospasm, and delayed vasospasm following spontaneous subarachnoid hemorrhage. J Clin Neurosci. 2014;21(2):256–62.

    PubMed  CrossRef  Google Scholar 

  71. Banki NM, Kopelnik A, Dae MW, et al. Acute neurocardiogenic injury after subarachnoid hemorrhage. Circulation. 2005;112(21):3314–9.

    PubMed  CrossRef  Google Scholar 

  72. Tso MK, Macdonald RL. Subarachnoid hemorrhage: a review of experimental studies on the microcirculation and the neurovascular unit. Transl Stroke Res. 2014;5(2):174–89.

    PubMed  CrossRef  Google Scholar 

  73. Larsson J, Ekblom A, Henriksson K, et al. Concentration of substance P, neurokinin A, calcitonin gene-related peptide, neuropeptide Y and vasoactive intestinal polypeptide in synovial fluid from knee joints in patients suffering from rheumatoid arthritis. Scand J Rheumatol. 1991;20(5):326–35.

    CAS  PubMed  CrossRef  Google Scholar 

  74. Juul R, Hara H, Gisvold SE, et al. Alterations in perivascular dilatory neuropeptides (CGRP, SP, VIP) in the external jugular vein and in the cerebrospinal fluid following subarachnoid haemorrhage in man. Acta Neurochir. 1995;132(1-3):32–41.

    CAS  PubMed  CrossRef  Google Scholar 

  75. Juul R, Aakhus S, Bjornstad K, et al. Calcitonin gene-related peptide (human alpha-CGRP) counteracts vasoconstriction in human subarachnoid haemorrhage. Neurosci Lett. 1994;170(1):67–70.

    CAS  PubMed  CrossRef  Google Scholar 

  76. Junger EC, Newell DW, Grant GA, et al. Cerebral autoregulation following minor head injury. J Neurosurg. 1997;86(3):425–32.

    CAS  PubMed  CrossRef  Google Scholar 

  77. Kvandal P, Sheppard L, Landsverk SA, et al. Impaired cerebrovascular reactivity after acute traumatic brain injury can be detected by wavelet phase coherence analysis of the intracranial and arterial blood pressure signals. J Clin Monit Comput. 2013;27(4):375–83.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  78. Patel MB, McKenna JW, Alvarez JM, et al. Decreasing adrenergic or sympathetic hyperactivity after severe traumatic brain injury using propranolol and clonidine (DASH After TBI Study): study protocol for a randomized controlled trial. Trials. 2012;13:177.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  79. Baguley IJ, Nicholls JL, Felmingham KL, et al. Dysautonomia after traumatic brain injury: a forgotten syndrome? J Neurol Neurosurg Psychiatry. 1999;67(1):39–43.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  80. Cherian L, Hlatky R, Robertson CS. Nitric oxide in traumatic brain injury. Brain Pathol. 2004;14(2):195–201.

    CAS  PubMed  CrossRef  Google Scholar 

  81. Mauler F, Hinz V, Horvath E, et al. Selective intermediate-/small-conductance calcium-activated potassium channel (KCNN4) blockers are potent and effective therapeutics in experimental brain oedema and traumatic brain injury caused by acute subdural haematoma. Eur J Neurosci. 2004;20(7):1761–8.

    PubMed  CrossRef  Google Scholar 

Download references

Financial Support

This study was supported by the National Key R&D Program of China (2016YFC1301600) to Yi Yang.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Guo, Z., Jin, H., Sun, X., Tong, LS., Zhang, J.H., Yang, Y. (2019). Cerebral Venous Regulation. In: , et al. Cerebral Venous System in Acute and Chronic Brain Injuries. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-96053-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96053-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96052-4

  • Online ISBN: 978-3-319-96053-1

  • eBook Packages: MedicineMedicine (R0)