Skip to main content

Imaging of Cerebral Vein in Acute Brain Injury

  • Chapter
  • First Online:
Cerebral Venous System in Acute and Chronic Brain Injuries

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

  • 507 Accesses

Abstract

Acute brain injury (ABI) usually causes long-term disability and a high mortality. During ABI, cerebral autoregulation is affected, and the harmony of cerebral circulation is interrupted. As venous system contains nearly 70–80% of the circulatory volume inside the inflexible cranial cavity and is more susceptible to the elevation of intracranial pressure than the arterial system, almost all kinds of ABI can present with changes in cerebral venous system. With the development of venous imaging and increased use of high resolution imaging protocols, understanding of venous structure, morphology and metabolism has become feasible and important, which may provide critical information for clinical diagnosing and prognosis prediction in ABI. In this chapter, we summarized the features found on venous imaging related to ABI, and discussed their clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cihangiroglu M, Ozdemir H, Kalender O, Ozveren F, Kabaalioglu A. Transverse sinus air after cranial trauma. Eur J Radiol. 2003;48(2):171–4.

    Article  PubMed  Google Scholar 

  2. Orebaugh SL, Margolis JH. Post-traumatic intracerebral pneumatocele: case report. J Trauma. 1990;30(12):1577–80.

    Article  CAS  PubMed  Google Scholar 

  3. Rubinstein D, Dangleis K, Damiano TR. Venous air emboli identified on head and neck CT scans. J Comput Assist Tomogr. 1996;20:559.

    Article  CAS  PubMed  Google Scholar 

  4. Santhosh K, Kesavadas C, Thomas B, et al. Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke. Clin Radiol. 2009;64(1):74–83.

    Article  CAS  PubMed  Google Scholar 

  5. Zaitsu Y, Kudo K, Terae S, et al. Mapping of cerebral oxygen extraction fraction changes with susceptibility-weighted phase imaging. Radiology. 2011;261(3):930–6.

    Article  PubMed  Google Scholar 

  6. Doshi H, Wiseman N, Liu J, Wang W, Welch RD, O’Neil BJ. Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage. PLoS One. 2015;10(7):e0118061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74.

    Article  CAS  PubMed  Google Scholar 

  8. Chen SF, Richards HK, Smielewski P, Johnstrom P, Salvador R, et al. Relationship between flow-metabolism uncoupling and evolving axonal injury after experimental traumatic brain injury. J Cereb Blood Flow Metab. 2004;24:1025–36.

    Article  CAS  PubMed  Google Scholar 

  9. Prins ML, Lee SM, Fujima LS, Hovda DA. Increased cerebral uptake and oxidation of exogenous betaHB improves ATP following traumatic brain injury in adult rats. J Neurochem. 2004;90:666–72.

    Article  CAS  PubMed  Google Scholar 

  10. Yilmaz U, Korner H, Meyer S, Reith W. Multifocal signal loss at bridging veins on susceptibility-weighted imaging in Abusive head trauma. Clin Neuroradiol. 2015;25(2):181–5.

    Article  PubMed  Google Scholar 

  11. Leeds NE, Reid ND, Rosen LM. Angiographic changes in cerebral contusions and intracerebral hematomas. Acta Radiol Diagn. 1966;5:320.

    Article  CAS  Google Scholar 

  12. Glickman MG, Mainzer F, Gletne JS. Early venous opacification in cerebral contusion. Radiology. 1971;100(3):615.

    Article  CAS  PubMed  Google Scholar 

  13. Lassen NA. The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain. Lancet. 1966;2:1113–5.

    Article  CAS  PubMed  Google Scholar 

  14. Langfitt TW, Weinstein JD, Kassell NF. Vascular factors in head injury; contribution to brain swelling and intracranial hypertension. In: Caveness WF, Walker AE, editors. Head injury: conference proceedings, 1966. Philadelphia: Lippincott; 1966, p. 172–94.

    Google Scholar 

  15. Alsafi A, Lakhani A, Jones LC, Lobotesis K. Cerebral venous sinus thrombosis, a nonenhanced CT diagnosis? Radiol Res Pract. 2015;2015:581437.

    PubMed  PubMed Central  Google Scholar 

  16. Black DF, Rad AE, Gray LA, Campeau NG, Kallmes DF. Cerebral venous sinus density on noncomtrast CT correlates with hematocrit. AJNR Am J Neuroradiol. 2011;32(7):1354–13571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Verhoeff FH, Brabin BJ, Masache P, Kachale B, Kazembe P, Van der Kaay HJ. Parasitological and haematological responses to treatment of Plasmodium falciparum malaria with sulphadoxine-pyrimethamine in southern Malawi. Ann Trop Med Parasitol. 1997;91(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  18. Singh S, Ramakrishnaiah RH, Hegde SV, Glasier CM. Compression of the posterior fossa venous sinuses by epidural hemorrhage simulating venous sinus thrombosis: CT and MR findings. Pediatr Radiol. 2016;46(1):67–72.

    Article  PubMed  Google Scholar 

  19. Poon CS, Chang JK, Swarnkar A, Johnson MH, Wasenko J. Radiologic diagnosis of cerebral venous thrombosis: pictotial review. AJR Am J Roentgenol. 2007;89:S64–75.

    Article  Google Scholar 

  20. Wetzel SG, Kirsch E, Stock KW, et al. Cerebral veins: comparative study of CT venography with intraarterial digital subtraction angiography. AJNR Am J Neuroradiol. 1999;20(2):249–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Battal B, Castillo M. Brain herniations into the dural venous sinuses or calvarium: MRI of a recently recognized entity. Neuroradiol J. 2014;27(1):55–62.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Leach JL, Fortuna RB, Jones BV, et al. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics. 2006;26(Suppl 1):S19–41 [discussion: S42–3].

    Article  PubMed  Google Scholar 

  23. Macchi PJ, Grossman RI, Gomori JM, Goldberg HI, Zimmerman RA, Bilaniuk LT. High field MR imaging of cerebral venous thrombosis. J Comput Assist Tomogr. 1986;10(1):10–5.

    Article  CAS  PubMed  Google Scholar 

  24. Dormont D, Anxionnant R, Evrard S, Louaille C, Chiras J, Marsault C. MRI in cerebral venous thrombosis. J Neuroradiol. 1994;21(2):81–99.

    CAS  PubMed  Google Scholar 

  25. Provenzale JM, Joseph G, Barboriak D. Dural sinus thrombosis: findings on CT and MR imaging and diagnostic pitfalls. AJR Am J Roentgenol. 1998;170:777–83.

    Article  CAS  PubMed  Google Scholar 

  26. Leach JL, Bluas RV, Ernst RJ, et al. MR imaging of isolated cortical vein thrombosis: the hyperintense vein sign. J Neurovasc Dis. 1996;1:1–7.

    Google Scholar 

  27. Thamburaj K, Choudhary A. Hyperintense vessel sign: isolated cortical venous thrombosis after l-asparaginase therapy. Pediatr Radiol. 2009;39:757.

    Article  PubMed  Google Scholar 

  28. Tsuruda JS, Shimakawa A, Pelc NJ, et al. Dural sinus occlusion: evaluation with phase-sensitive gradient-echo MR imaging. AJNR Am J Neuroradiol. 1991;12:481–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hahnemann ML, Kinner S, Schweiger B, Bajanowski T, Karger B, Pfeiffer H, et al. Imaging of bridging vein thrombosis in infants with abusive head trauma: the “Tadpole Sign”. Eur Radiol. 2015;25(2):299–305.

    Article  PubMed  Google Scholar 

  30. Mullins ME, Grant PE, Wang B, Gonzales RG, Schaefer PW. Parenchymal abnormalities associated with cerebral venous thrombosis: assessment with diffusion-weighted MR imaging. AJNR Am J Neuroradiol. 2004;25(10):1666–75.

    PubMed  PubMed Central  Google Scholar 

  31. Keller P. Time-of-flight magnetic resonance angiography. Neuroimaging Clin N Am. 1992;2:639–56.

    Google Scholar 

  32. Dumoulin C. Phase-contrast magnetic resonance angiography. Neuroimaging Clin N Am. 1992;2:657–76.

    Google Scholar 

  33. Melhem ER, Jara H, Yucel EK. Black blood MR angiography using multislab three-dimensional T1-weighted turbo spin-echo technique: imaging of intracranial circulation. AJR Am J Roentgenol. 1997;169:1418–20.

    Article  CAS  PubMed  Google Scholar 

  34. Turski P, Korosec F. Technical features and emerging clinical applications of phase-contrast magnetic resonance angiography. Neuroimaging Clin N Am. 1992;2:785–800.

    Google Scholar 

  35. Reichenbach JR, Jonetz-Mentzel L, Fitzek C, Haacke EM, Kido DK, Lee BCP, Kaiser WA. High-resolution blood oxygen-level dependent MR venography (HRBV): a new technique. Neuroradiology. 2001;43:364–9.

    Article  CAS  PubMed  Google Scholar 

  36. Yang Q, Duan JG, Fan ZY, Qu XF, Xie YB, Nguyen C, et al. Early detection and quantification of cerebral venous thrombosis by magnetic resonance black-blood thrombus imaging. Stroke. 2016;47(2):404–9.

    Article  PubMed  Google Scholar 

  37. Willinsky RA. Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology. 2003;227(2):522–8.

    Article  PubMed  Google Scholar 

  38. Saposnik G, Barinagarrementeria F, Brown RDJ, et al. Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42(4):1158–92.

    Article  PubMed  Google Scholar 

  39. Stolz E, Kaps M, Dorndorf W. Assessment of intracranial venous hemodynamics in normal individuals and patients with cerebral venous thrombosis. Stroke. 1999;30(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  40. Wardlaw JM, Vaughan GT, Steers AJW, Sellar RJ. Transcranial Doppler ultrasound findings in cerebral venous sinus thrombosis. J Neurosurg. 1994;80:332–5.

    Article  CAS  PubMed  Google Scholar 

  41. Canhão P, Batista P, Ferro JM. Venous transcranial Doppler in acute dural sinus thrombosis. J Neurol. 1998;245:276–9.

    Article  PubMed  Google Scholar 

  42. Valdueza JM, Schultz M, Harms L, Einhäupl KM. Venous transcranial Doppler ultrasound monitoring in acute dural sinus thrombosis: report of two cases. Stroke. 1995;26:1196–9.

    Article  CAS  PubMed  Google Scholar 

  43. Becker G, Bogdahn U, Gehlberg C, Fröhlich T, Hofmann E, Schlief R. Transcranial color-coded real-time sonography of intracranial veins: normal values of blood flow velocities and findings in superior sagittal sinus thrombosis. J Neuroimaging. 1995;5:87–94.

    Article  CAS  PubMed  Google Scholar 

  44. Kokkinis C, Vlychou M, Zavras GM, Hadjigeorgiou GM, Papadimitriou A, Fezoulidis IV. The role of 3D-computed tomography angiography (3D-CTA) in investigation of spontaneous subarachnoid haemorrhage: comparison with digital subtraction angiography (DSA) and surgical findings. Br J Neurosurg. 2008;22(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  45. Yamakawa H, Ohe N, Yano H, Yoshimura S, Iwama T. Venous drainage patterns in perimesencephalic nonaneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg. 2008;110(6):587–91.

    Article  PubMed  Google Scholar 

  46. Alen JF, Lagares A, Campollo J, Ballenilla F, Kaen A, Nunez AP, et al. Idiopathic subarachnoid hemorrhage and venous drainage: are they related? Neurosurgery. 2008;63(6):1106–11; discussion 11-2.

    Article  PubMed  Google Scholar 

  47. Watanabe A, Hirano K, Kamada M, Imamura K, Ishii N, Sekihara Y, et al. Perimesencephalic nonaneurysmal subarachnoid hemorrhage and variations in the veins. Neuroradiology. 2002;44:319–25.

    Article  CAS  PubMed  Google Scholar 

  48. Shad A, Rourke TJ, Jahromi AH, Green AL. Straight sinus stenosis as a proposed cause of perimesencephalic non-aneurysmal haemorrhage. J Clin Neurosci. 2008;15(7):839–41.

    Article  PubMed  Google Scholar 

  49. Sun Y, Shen Q, Watts LT, Muir ER, Huang S, Yang GY, et al. Multimodal MRI characterization of experimental subarachnoid hemorrhage. Neuroscience. 2016;316:53–62.

    Article  CAS  PubMed  Google Scholar 

  50. Shastri M, Trivedi S, Rana K, Patel D, Tripathi R, Patell R. Cortical venous thrombosis presenting with subarachnoid haemorrhage. Australas Med J. 2015;8(5):148–53.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mursch K, Wachter A, Radke K, Buhre W, Al-Sufi S, Munzel U, et al. Blood flow velocities in the basal vein after subarachnoid haemorrhage a prospective study using transcranial duplex sonography. Acta Neurochir. 2001;143(8):793–9.

    Article  CAS  PubMed  Google Scholar 

  52. Matsuda M, Shiino A, Handa J. Sequential-changes of cerebral blood-flow after aneurysmal subarachnoid hemorrhage. Acta Neurochir. 1990;105(3-4):98–106.

    Article  CAS  PubMed  Google Scholar 

  53. Schwarzmaier SM, Kim SW, Trabold R, et al. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma. 2010;27:121–30.

    Article  PubMed  Google Scholar 

  54. Woringer E, Baumgartner J, Braun J. Sign of early local-regional venous opacification during rapid carotid serio-angiography. Acta Radiol. 1958;50(1-2):125–31.

    Article  CAS  PubMed  Google Scholar 

  55. Cronqvist S, Laroche F. Transitory hyperaemia in focal cerebral vascular lesions studied by angiography and regional cerebral blood flow measurements. Br J Radiol. 1967;40(472):270–4.

    Article  CAS  PubMed  Google Scholar 

  56. Taveras J, Gilson J, Davis D, Kilgore B, Rumbaugh C. Angiography in cerebral infarction. Radiology. 1969;93(3):549–58.

    Article  CAS  PubMed  Google Scholar 

  57. Ohta H, Nakano S, Yokogami K, Iseda T, Yoneyama T, Wakisaka S. Appearance of early venous filling during intra-arterial reperfusion therapy for acute middle cerebral artery occlusion: a predictive sign for hemorrhagic complications. Stroke. 2004;35(4):893–8.

    Article  PubMed  Google Scholar 

  58. Olsen TS, Skriver EB, Herning M. Radiologic manifestations of focal cerebral hyperemia in acute stroke. Acta Radiol. 1991;32(2):100–4.

    Article  CAS  PubMed  Google Scholar 

  59. Dorn F, Kuntze-Soderqvist A, Popp S, Lockau H, Haller B, Zimmer C, et al. Early venous drainage after successful endovascular recanalization in ischemic stroke—a predictor for final infarct volume? Neuroradiology. 2012;54(7):745–51.

    Article  CAS  PubMed  Google Scholar 

  60. Yu W, Rives J, Welch B, White J, Stehel E, Samson D. Hypoplasia or occlusion of the ipsilateral cranial venous drainage is associated with early fatal edema of middle cerebral artery infarction. Stroke. 2009;40(12):3736–9.

    Article  PubMed  Google Scholar 

  61. Lassen NA. Control of cerebral circulation in health and disease. Circ Res. 1974;34(6):749–60.

    Article  CAS  PubMed  Google Scholar 

  62. Ushiwata I, Ushiki T. Cytoarchitecture of the smooth muscle and pericytes of rat cerebral blood vessels. A scanning electron microscopic study. J Neurosurg. 1990;73:82–90.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang Z, Deng X, Dai Z, Chen B, Gao B, Xia C, Chen D, Han H. MRI image of the internal cerebral vein and basilar artery of rabbit following subarachnoid hemorrhage. Chin J Anat. 2012;35:137–41.

    CAS  Google Scholar 

  64. Sehba FA, Mostafa G, Friedrich V Jr, Bederson JB. Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg. 2005;102(6):1094–100.

    Article  PubMed  Google Scholar 

  65. Larsen CC, Hansen-Schwartz J, Nielsen JD, Astrup J. Blood coagulation and fibrinolysis after experimental subarachnoid hemorrhage. Acta Neurochir. 2010;152(9):1577–81; discussion 81.

    Article  PubMed  Google Scholar 

  66. Ostergaard L, Aamand R, Karabegovic S, Tietze A, Blicher JU, Mikkelsen IK, et al. The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2013;33(12):1825–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kim HJ, Lee CH, Lee SH. Early development of vasogenic edema in experimental cerebral fat embolism in cats. Investig Radiol. 2001;36:460–9.

    Article  CAS  Google Scholar 

  68. Kim YW, Kim HJ, Choi SH, Kim DC. Prominent hypointense veins on susceptibility weighted image in the cat brain with acute infarction: DWI, SWI, and PWI. Acta Radiol. 2014;55(8):1008–14.

    Article  PubMed  Google Scholar 

  69. Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol. 2009;30(2):232–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hermier M, Nighoghossian N. Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke. 2004;35(8):1989–94.

    Article  PubMed  Google Scholar 

  71. Tsui YK, Tsai FY, Hasso AN, Greensite F, Nguyen BV. Susceptibility-weighted imaging for differential diagnosis of cerebral vascular pathology: a pictorial review. J Neurol Sci. 2009;287(1-2):7–16.

    Article  PubMed  Google Scholar 

  72. Sun W, Liu W, Zhang Z, et al. Asymmetrical cortical vessel sign on susceptibility-weighted imaging: a novel imaging marker for early neurological deterioration and unfavorable prognosis. Eur J Neurol. 2014;21(11):1411–8.

    Article  CAS  PubMed  Google Scholar 

  73. Chen CY, Chen CI, Tsai FY, Tsai PH, Chan WP. Prominent vessel sign on susceptibility-weighted imaging in acute stroke: prediction of infarct growth and clinical outcome. PLoS One. 2015;10(6):e0131118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Souza LCS, Yoo AJ, Chaudhry ZA, Payabvash S, Kemmling A, Schaefer PW, et al. Malignant CTA collateral profile is highly specific for large admission DWI infarct core and poor outcome in acute stroke. Am J Neuroradiol. 2012;33(7):1331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Verma RK, Hsieh K, Gratz PP, Schankath AC, Mordasini P, Zubler C, et al. Leptomeningeal collateralization in acute ischemic stroke: impact on prominent cortical veins in susceptibility-weighted imaging. Eur J Radiol. 2014;83(8):1448–54.

    Article  PubMed  Google Scholar 

  76. Baik SK, Choi W, Oh SJ, Park KP, Park MG, Yang TI, et al. Change in cortical vessel signs on susceptibility-weighted images after full recanalization in hyperacute ischemic stroke. Cerebrovasc Dis. 2012;34(3):206–12.

    Article  PubMed  Google Scholar 

  77. Xia S, Utriainen D, Tang J, Kou Z, Zheng G, Wang X, et al. Decreased oxygen saturation in asymmetrically prominent cortical veins in patients with cerebral ischemic stroke. Magn Reson Imaging. 2014;32(10):1272–6.

    Article  PubMed  Google Scholar 

  78. Horie N, Morikawa M, Nozaki A, Hayashi K, Suyama K, Nagata I. “Brush Sign” on susceptibility-weighted MR imaging indicates the severity of moyamoya disease. Am J Neuroradiol. 2011;32(9):1697–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Han X, Ouyang L, Zhang C, Ma H, Qin J. Relationship between deep medullary veins in susceptibility-weighted imaging and ipsilateral cerebrovascular reactivity of middle cerebral artery in patients with ischemic stroke. Exp Ther Med. 2016;11(6):2217–20.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Terasawa Y, Yamamoto N, Morigaki R, Fujita K, Izumi Y, Satomi J, et al. Brush sign on 3-T T2*-weighted MRI as a potential predictor of hemorrhagic transformation after tissue plasminogen activator therapy. Stroke. 2014;45(1):274–6.

    Article  CAS  PubMed  Google Scholar 

  81. Morita N, Harada M, Uno M, Matsubara S, Matsuda T, Nagahiro S, et al. Ischemic findings of T2*-weighted 3-tesla MRI in acute stroke patients. Cerebrovasc Dis. 2008;26(4):367–75.

    Article  PubMed  Google Scholar 

  82. Parthasarathy R, Kate M, Rempel JL, Liebeskind DS, Jeerakathil T, Butcher KS, et al. Prognostic evaluation based on cortical vein score difference in stroke. Stroke. 2013;44(10):2748–54.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Parthasarathy R, Sohn SI, Jeerakathil T, Kate MP, Mishra SM, Nambiar VK, et al. A combined arterial and venous grading scale to predict outcome in anterior circulation ischemic stroke. J Neuroimaging. 2015;25(6):969–77.

    Article  PubMed  Google Scholar 

  84. Sharma VK, Yeo LL, Teoh HL, Shen L, Chan BP, Seet RC, et al. Internal cerebral vein asymmetry on follow-up brain computed tomography after intravenous thrombolysis in acute anterior circulation ischemic stroke is associated with poor outcome. J Stroke Cerebrovasc Dis. 2014;23(1):e39–45.

    Article  PubMed  Google Scholar 

  85. Bhaskar S, Bivard A, Stanwell P, Attia JR, Parsons M, Nilsson M, et al. Association of cortical vein filling with clot location and clinical outcomes in acute ischaemic stroke patients. Sci Rep. 2016;6:38525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bhaskar S, Bivard A, Parsons M, Nilsson M, Attia JR, Stanwell P, et al. Delay of late-venous phase cortical vein filling in acute ischemic stroke patients: associations with collateral status. J Cereb Blood Flow Metab. 2017;37:671.

    Article  PubMed  Google Scholar 

  87. Bousser MG. [Cerebral venous thrombosis. Report of 76 cases]. J Mal Vasc. 1991;16(3):249–54; discussion 54–5.

    Google Scholar 

  88. Bravo M, Ferrer S. [Deep venous cerebral thrombosis. Report of one case]. Rev Med Chil. 1998;126(10):1234–7.

    Google Scholar 

  89. Soga Y, Oka K, Sato M, Kabata T, Kawasaki T, Kawano H, et al. Cavernous sinus thrombophlebitis caused by sphenoid sinusitis—report of autopsy case. Clin Neuropathol. 2001;20(3):101–5.

    CAS  PubMed  Google Scholar 

  90. Elkeslassy A, Weill A, Miaux Y, Savin D, Duverneuil NM, Chiras J. Dilatation of deep medullary veins in cortical venous occlusion due to focal tuberculous leptomeningitis. Neuroradiology. 1997;39(10):705–7.

    Article  CAS  PubMed  Google Scholar 

  91. Doepp F, Valdueza JM, Schreiber SJ. Serial ultrasound assessment of the basal vein of rosenthal in HSV encephalitis. Ultrasound Med Biol. 2006;32(4):473–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, X., Lou, M. (2019). Imaging of Cerebral Vein in Acute Brain Injury. In: Lou, M., et al. Cerebral Venous System in Acute and Chronic Brain Injuries. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-96053-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96053-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96052-4

  • Online ISBN: 978-3-319-96053-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics