Skip to main content

Animal Models of Venous Stroke

  • 441 Accesses

Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

Cerebral venous thrombosis (CVT) involves thrombosis of the veins and sinuses of the brain, most commonly the superior sagittal sinus. Although incidence of CVT is relatively low (it accounts for only 0.5% of all strokes), CVT is a significant cause of stroke in young patients. CVT can produce partial venous occlusion obstructing venous drainage, increasing venous pressure and consequently leading to edema and hemorrhage. Despite intensive research the pathophysiological progress of CVT is poorly understood and further investigation, for all development of new reliable animal models able to evaluate the efficacy and safety of therapeutic approaches, are urgently needed. The ideal model should comprise simultaneously inducted cortical venous thrombosis, infarct and hemorrhage with consecutive relevant neurological deficits mimicking the pathophysiologic changings induced CVT in humans and allowing testing of therapeutic strategies. In contrast to arterial stroke, currently there are only a few animal models of CVT. The existing models employ either an injection of thrombogenic substances or a ligation of the sinus or cortical veins. In this chapter we will address the evolution of animal models of CVT and discuss their limitations.

Keywords

  • Cerebral veins
  • Animal models

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-96053-1_2
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-96053-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9

Notes

  1. 1.

    The Schwartzman phenomenon is an immune reaction, which was observed in rabbits by Sarwar et al. The reaction was induced by exposing the SSS, scarifying its dorsal wall by needle point and applying a cotton-wool pledget soaked in potent E. coli filtrate over the exposed SSS for 10 min. 24 h after this procedure precipitating dose of 4 ml of the filtrate was injected into the marginal vein of the ear. Histologic evaluation 3 days later detected hemorrhage and necrosis of the soft tissues bordering the operation area, however no SSS thrombosis was noticed [10].

References

  1. Bousser MG, Ferro JM. Cerebral venous thrombosis: an update. Lancet Neurol. 2007;6:162–70.

    CAS  CrossRef  Google Scholar 

  2. Nagai M, Terao S, Yilmaz G, Yilmaz CE, Esmon CT, Watanabe E, Granger DN. Roles of inflammation and the activated protein C pathway in the brain edema associated with cerebral venous sinus thrombosis. Stroke. 2010;41:147–52.

    CrossRef  Google Scholar 

  3. Nagai M, Yilmaz CE, Kirchhofer D, Esmon CT, Mackman N, Granger DN. Role of coagulation factors in cerebral venous sinus and cerebral microvascular thrombosis. Neurosurgery. 2010;66:560–5; discussion 65–6.

    CrossRef  Google Scholar 

  4. Miyamoto K, Heimann A, Kempski O. Microcirculatory alterations in a Mongolian gerbil sinus-vein thrombosis model. J Clin Neurosci. 2001;8(Suppl 1):97–105.

    CrossRef  Google Scholar 

  5. Ungersbock K, Heimann A, Kempski O. Cerebral blood flow alterations in a rat model of cerebral sinus thrombosis. Stroke. 1993;24:563–9; discussion 69–70.

    CAS  CrossRef  Google Scholar 

  6. Beck DJ, Russell DS. Experiments on thrombosis of the superior longitudinal sinus. J Neurosurg. 1946;3:337–47.

    CAS  CrossRef  Google Scholar 

  7. Sakaki T, Kakizaki T, Takeshima T, Miyamoto K, Tsujimoto S. Importance of prevention of intravenous thrombosis and preservation of the venous collateral flow in bridging vein injury during surgery: an experimental study. Surg Neurol. 1995;44:158–62.

    CAS  CrossRef  Google Scholar 

  8. Woolf AL. Experimentally produced cerebral venous obstruction. J Pathol Bacteriol. 1954;67:1–16.

    CAS  CrossRef  Google Scholar 

  9. Heinz ER, Geeter D, Gabrielsen TO. Cortical vein thrombosis in the dog with a review of aseptic intracranial venous thrombosis in man. Acta Radiol Diagn. 1972;13:105–14.

    CAS  CrossRef  Google Scholar 

  10. Sarwar M, Virapongse C, Carbo P. Experimental production of superior sagittal sinus thrombosis in the dog. AJNR Am J Neuroradiol. 1985;6:19–22.

    CAS  PubMed  Google Scholar 

  11. Fries G, Wallenfang T, Hennen J, Velthaus M, Heimann A, Schild H, Perneczky A, Kempski O. Occlusion of the pig superior sagittal sinus, bridging and cortical veins: multistep evolution of sinus-vein thrombosis. J Neurosurg. 1992;77:127–33.

    CAS  CrossRef  Google Scholar 

  12. Owens G, Stahlman G, Capps J, Meirowsky AM. Experimental occlusion of dural sinuses. J Neurosurg. 1957;14:640–7.

    CAS  CrossRef  Google Scholar 

  13. Deckert M, Frerichs K, Mehraein P, Kempski O, Baethmann A, Einhaupl K. A new experimental model of sinus vein thrombosis. In: Einhaupl K, Kempski O, Baethmann A, editors. Cerebral sinus thrombosis. New York: Plenum; 1990. p. 39–42.

    CrossRef  Google Scholar 

  14. Frerichs KU, Deckert M, Kempski O, Schurer L, Einhaupl K, Baethmann A. Cerebral sinus and venous thrombosis in rats induces long-term deficits in brain function and morphology—evidence for a cytotoxic genesis. J Cereb Blood Flow Metab. 1994;14:289–300.

    CAS  CrossRef  Google Scholar 

  15. Nakase H, Heimann A, Kempski O. Alterations of regional cerebral blood flow and oxygen saturation in a rat sinus-vein thrombosis model. Stroke. 1996;27:720–7; discussion 28.

    CAS  CrossRef  Google Scholar 

  16. Nakase H, Takeshima T, Sakaki T, Heimann A, Kempski O. Superior sagittal sinus thrombosis: a clinical and experimental study. Skull Base Surg. 1998;8:169–74.

    CAS  CrossRef  Google Scholar 

  17. Rother J, Waggie K, van Bruggen N, de Crespigny AJ, Moseley ME. Experimental cerebral venous thrombosis: evaluation using magnetic resonance imaging. J Cereb Blood Flow Metab. 1996;16:1353–61.

    CAS  CrossRef  Google Scholar 

  18. Stracke CP, Spuentrup E, Katoh M, Gunther RW, Spangenberg P. New experimental model of sinus and cortical vein thrombosis in pigs for MR imaging studies. Neuroradiology. 2006;48:721–9.

    CAS  CrossRef  Google Scholar 

  19. Kim DE, Schellingerhout D, Jaffer FA, Weissleder R, Tung CH. Near-infrared fluorescent imaging of cerebral thrombi and blood-brain barrier disruption in a mouse model of cerebral venous sinus thrombosis. J Cereb Blood Flow Metab. 2005;25:226–33.

    CrossRef  Google Scholar 

  20. Nakase H, Kakizaki T, Miyamoto K, Hiramatsu K, Sakaki T. Use of local cerebral blood flow monitoring to predict brain damage after disturbance to the venous circulation: cortical vein occlusion model by photochemical dye. Neurosurgery. 1995;37:280–5; discussion 85–6.

    CAS  CrossRef  Google Scholar 

  21. Otsuka H, Ueda K, Heimann A, Kempski O. Effects of cortical spreading depression on cortical blood flow, impedance, DC potential, and infarct size in a rat venous infarct model. Exp Neurol. 2000;162:201–14.

    CAS  CrossRef  Google Scholar 

  22. Schaller C, Nakase H, Kotani A, Nishioka T, Meyer B, Sakaki T. Impairment of autoregulation following cortical venous occlusion in the rat. Neurol Res. 2002;24:210–4.

    CrossRef  Google Scholar 

  23. Rosenblum WI, El-Sabban F. Platelet aggregation in the cerebral microcirculation: effect of aspirin and other agents. Circ Res. 1977;40:320–8.

    CAS  CrossRef  Google Scholar 

  24. Watson BD, Dietrich WD, Prado R, Ginsberg MD. Argon laser-induced arterial photothrombosis. Characterization and possible application to therapy of arteriovenous malformations. J Neurosurg. 1987;66:748–54.

    CAS  CrossRef  Google Scholar 

  25. Dietrich WD, Prado R, Watson BD, Nakayama H. Middle cerebral artery thrombosis: acute blood-brain barrier consequences. J Neuropathol Exp Neurol. 1988;47:443–51.

    CAS  CrossRef  Google Scholar 

  26. Kimura R, Nakase H, Tamaki R, Sakaki T. Vascular endothelial growth factor antagonist reduces brain edema formation and venous infarction. Stroke. 2005;36:1259–63.

    CAS  CrossRef  Google Scholar 

  27. Kurz KD, Main BW, Sandusky GE. Rat model of arterial thrombosis induced by ferric chloride. Thromb Res. 1990;60:269–80.

    CAS  CrossRef  Google Scholar 

  28. Rottger C, Bachmann G, Gerriets T, Kaps M, Kuchelmeister K, Schachenmayr W, Walberer M, Wessels T, Stolz E. A new model of reversible sinus sagittalis superior thrombosis in the rat: magnetic resonance imaging changes. Neurosurgery. 2005;57:573–80; discussion 73–80.

    CrossRef  Google Scholar 

  29. Rottger C, Madlener K, Heil M, Gerriets T, Walberer M, Wessels T, Bachmann G, Kaps M, Stolz E. Is heparin treatment the optimal management for cerebral venous thrombosis? Effect of abciximab, recombinant tissue plasminogen activator, and enoxaparin in experimentally induced superior sagittal sinus thrombosis. Stroke. 2005;36:841–6.

    CrossRef  Google Scholar 

  30. Stolz E, Yeniguen M, Kreisel M, Kampschulte M, Doenges S, Sedding D, Ritman EL, Gerriets T, Langheinrich AC. Angioarchitectural changes in subacute cerebral venous thrombosis. A synchrotron-based micro- and nano-CT study. NeuroImage. 2011;54:1881–6.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Hu, Q., Manaenko, A. (2019). Animal Models of Venous Stroke. In: , et al. Cerebral Venous System in Acute and Chronic Brain Injuries. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-96053-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96053-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96052-4

  • Online ISBN: 978-3-319-96053-1

  • eBook Packages: MedicineMedicine (R0)