Skip to main content

Neurovascular Network as Future Therapeutic Targets

  • 469 Accesses

Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

In recent years, endovascular treatment, including pharmaceutical drugs and intervention therapy, has become one of the most effective strategies for stroke patients. However, neurobiological and neurovascular functions, before, during and after endovascular therapy, have not been fully addressed and remain to be clarified. It is extremely important for basic neurovascular scientists and clinicians to understand the neurobiological and neurovascular fundamentals of neuroimaging mismatches and the infarct size of stroke patients, hyperperfusion or hypoperfusion after thrombolysis or thrombolectomy, and brain swelling and hemorrhage after successful thrombolectomy. These clinical mismatches and complexities after endovascular therapy are related to active tissue connections in the neurovascular network and the function of neurobiological and neurovascular components after stroke. This comprehensive review summarizes the fundamental neurobiology and neurovascular function in endovascular therapy for stroke patients, using both basic science research and clinical studies, with a focus on cerebral hemodynamics, cell energy metabolism, and neurovascular injuries such as brain swelling, hemorrhage or over-reperfusion. A major emphasis is the potential role of cerebral collateral circulation and venous circulation during and after endovascular therapy. It is clear that the cerebral hemodynamic balance, venous function, and autoregulation are all involved in endovascular therapy.

Keywords

  • Neurovascular network
  • Cerebral veins
  • Stroke

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-96053-1_1
  • Chapter length: 47 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-96053-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7
Fig. 1.8
Fig. 1.9
Fig. 1.10
Fig. 1.11

Abbreviations

CBF:

Cerebral blood flow

CBF:

Cerebral blood flow

CFI:

Collateral flow index

CO2:

Carbon dioxide

CPP:

Cerebral perfusion pressure

CT:

Computed tomography

CTA:

computed tomography angiography

CTP:

Computed tomography perfusion

CTV:

Computed tomography venography

DSA:

Digital subtraction angiography

DVP:

Draining vein pressure

DWI:

Diffusion weighted imaging

ECD:

Echo color Doppler

EG:

Emptying gradient

ET:

Emptying time

FG:

Filling gradient

FLAIR:

Fluid-attenuated inversion recovery

fMUS:

Functional micro-ultrasound

FT:

Filling time

GOS:

Glasgow outcome scale

HBinF:

Head inflow

HBoutF:

Head outflow

MCAO:

Middle cerebral artery occlusion

MRA:

Magnetic resonance angiography

MRI:

Magnetic resonance imaging

MRV:

Magnetic resonance venography

NIHSS:

National Institutes of Health Stroke Scale

NO:

Nitric oxide

OPS:

Orthogonal polarized spectral

PDGF:

Platelet-derived growth factor

PDGF-BB:

Platelet-derived growth factor-BB

PPARγ:

Peroxisome proliferator-activated receptor-gamma

rCBF:

Relative cerebral blood flow

rCBV:

Relative cerebral blood volume

ROS:

Reactive oxygen species

rtPA:

Recombinant tissue plasminogen activator

RV:

Residual volume

SPECT:

Single photon emission computed tomography

SSS:

Superior sagittal sinus

SWI:

Susceptibility weighted imaging

VEGF:

Vascular endothelial growth factor

VV:

Venous volume

References

  1. Paciaroni M, Bogousslavsky J. How did stroke become of interest to neurologists?: a slow 19th century saga. Neurology. 2009;73:724–8.

    PubMed  CrossRef  Google Scholar 

  2. Safavi-Abbasi S, Reis C, Talley MC, Theodore N, Nakaji P, Spetzler RF, Preul MC. Rudolf Ludwig Karl Virchow: pathologist, physician, anthropologist, and politician. Implications of his work for the understanding of cerebrovascular pathology and stroke. Neurosurg Focus. 2006;20:E1.

    PubMed  CrossRef  Google Scholar 

  3. Eckert B. Acute stroke therapy 1981-2009. Klin Neuroradiol. 2009;19:8–19.

    PubMed  CrossRef  Google Scholar 

  4. National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995;333:1581–7.

    CrossRef  Google Scholar 

  5. Lees KR, Bluhmki E, von Kummer R, Brott TG, Toni D, Grotta JC, Albers GW, Kaste M, Marler JR, Hamilton SA, Tilley BC, Davis SM, Donnan GA, Hacke W, Ecass AN, Group, E.r.-P.S., Allen K, Mau J, Meier D, del Zoppo G, De Silva DA, Butcher KS, Parsons MW, Barber PA, Levi C, Bladin C, Byrnes G. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet. 2010;375:1695–703.

    CAS  PubMed  CrossRef  Google Scholar 

  6. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59:467–77.

    PubMed  CrossRef  CAS  Google Scholar 

  7. del Zoppo GJ. Stroke and neurovascular protection. N Engl J Med. 2006;354:553–5.

    PubMed  CrossRef  Google Scholar 

  8. Guo S, Lo EH. Dysfunctional cell-cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke. 2009;40:S4–7.

    PubMed  CrossRef  Google Scholar 

  9. Iadecola C, Anrather J. Stroke research at a crossroad: asking the brain for directions. Nat Neurosci. 2011;14:1363–8.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  10. Xing C, Hayakawa K, Lok J, Arai K, Lo EH. Injury and repair in the neurovascular unit. Neurol Res. 2012;34:325–30.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  11. Xing C, Lo EH. Help-me signaling: non-cell autonomous mechanisms of neuroprotection and neurorecovery. Prog Neurobiol. 2017;152:181.

    PubMed  CrossRef  Google Scholar 

  12. Shi Y, Leak RK, Keep RF, Chen J. Translational stroke research on blood-brain barrier damage: challenges, perspectives, and goals. Transl Stroke Res. 2016;7:89–92.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  13. Chen S, Chen Y, Xu L, Matei N, Tang J, Feng H, Zhang JH. Venous system in acute brain injury: mechanisms of pathophysiological change and function. Exp Neurol. 2015;272:4–10.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  14. Chen Y, Li Q, Tang J, Feng H, Zhang JH. The evolving roles of pericyte in early brain injury after subarachnoid hemorrhage. Brain Res. 2015;1623:110–22.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  15. Li Q, Khatibi N, Zhang JH. Vascular neural network: the importance of vein drainage in stroke. Transl Stroke Res. 2014;5:163–6.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  16. Yin Y, Ge H, Zhang JH, Feng H. Targeting vascular neural network in intracerebral hemorrhage. Curr Pharm Des. 2017;23:2197.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Zhang JH, Badaut J, Tang J, Obenaus A, Hartman R, Pearce WJ. The vascular neural network—a new paradigm in stroke pathophysiology. Nat Rev Neurol. 2012;8:711–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  18. Zhang Z, Deng X, Dai Z, Chen B, Gao B, Xia C, Chen D, Han H. MRI image of the internal cerebral vein and basilar artery of rabbit following subarachnoid hemorrhage. Chin J Anat. 2012;35:137–40.

    CAS  Google Scholar 

  19. Xing C, Hayakawa K, Lo EH. Mechanisms, imaging, and therapy in stroke recovery. Transl Stroke Res. 2017;8:1.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Ginsberg MD. Expanding the concept of neuroprotection for acute ischemic stroke: the pivotal roles of reperfusion and the collateral circulation. Prog Neurobiol. 2016;145-146:46–77.

    PubMed  CrossRef  Google Scholar 

  21. Liang LJ, Yang JM, Jin XC. Cocktail treatment, a promising strategy to treat acute cerebral ischemic stroke? Med Gas Res. 2016;6:33–8.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  22. Rodrigues FB, Neves JB, Caldeira D, Ferro JM, Ferreira JJ, Costa J. Endovascular treatment versus medical care alone for ischaemic stroke: systematic review and meta-analysis. BMJ. 2016;353:i1754.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Shi SH, Qi ZF, Luo YM, Ji XM, Liu KJ. Normobaric oxygen treatment in acute ischemic stroke: a clinical perspective. Med Gas Res. 2016;6:147–53.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  24. Zhai WW, Sun L, Yu ZQ, Chen G. Hyperbaric oxygen therapy in experimental and clinical stroke. Med Gas Res. 2016;6:111–8.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  25. Linfante I, Cipolla MJ. Improving reperfusion therapies in the era of mechanical thrombectomy. Transl Stroke Res. 2016;7:294–302.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  26. Pound P, Bury M, Ebrahim S. From apoplexy to stroke. Age Ageing. 1997;26:331–7.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Schiller F. Concepts of stroke before and after Virchow. Med Hist. 1970;14:115–31.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  28. Simon RP, Swan JH, Griffiths T, Meldrum BS. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science. 1984;226:850–2.

    CAS  PubMed  CrossRef  Google Scholar 

  29. del Zoppo GJ. The neurovascular unit in the setting of stroke. J Intern Med. 2010;267:156–71.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  30. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5:347–60.

    CAS  CrossRef  PubMed  Google Scholar 

  31. Lo EH, Broderick JP, Moskowitz MA. tPA and proteolysis in the neurovascular unit. Stroke. 2004;35:354–6.

    PubMed  CrossRef  Google Scholar 

  32. McHedlishvili G. Physiological mechanisms controlling cerebral blood flow. Stroke. 1980;11:240–8.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Hallenbeck JM, Bradley ME. Experimental model for systematic study of impaired microvascular reperfusion. Stroke. 1977;8:238–43.

    CAS  PubMed  CrossRef  Google Scholar 

  34. Yu W, Rives J, Welch B, White J, Stehel E, Samson D. Hypoplasia or occlusion of the ipsilateral cranial venous drainage is associated with early fatal edema of middle cerebral artery infarction. Stroke. 2009;40:3736–9.

    PubMed  CrossRef  Google Scholar 

  35. al-Rodhan NR, Sundt TM Jr, Piepgras DG, Nichols DA, Rufenacht D, Stevens LN. Occlusive hyperemia: a theory for the hemodynamic complications following resection of intracerebral arteriovenous malformations. J Neurosurg. 1993;78:167–75.

    CAS  PubMed  CrossRef  Google Scholar 

  36. Nakase H, Heimann A, Kempski O. Local cerebral blood flow in a rat cortical vein occlusion model. J Cereb Blood Flow Metab. 1996;16:720–8.

    CAS  PubMed  CrossRef  Google Scholar 

  37. Ames A 3rd, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968;52:437–53.

    PubMed  PubMed Central  Google Scholar 

  38. Andeweg J. Consequences of the anatomy of deep venous outflow from the brain. Neuroradiology. 1999;41:233–41.

    CAS  PubMed  CrossRef  Google Scholar 

  39. Kilic T, Akakin A. Anatomy of cerebral veins and sinuses. Front Neurol Neurosci. 2008;23:4–15.

    PubMed  CrossRef  Google Scholar 

  40. Schmidek HH, Auer LM, Kapp JP. The cerebral venous system. Neurosurgery. 1985;17:663–78.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Dickerman RD, Smith GH, Langham-Roof L, McConathy WJ, East JW, Smith AB. Intra-ocular pressure changes during maximal isometric contraction: does this reflect intra-cranial pressure or retinal venous pressure? Neurol Res. 1999;21:243–6.

    CAS  PubMed  CrossRef  Google Scholar 

  42. Edvinsson L, Hogestatt ED, Uddman R, Auer LM. Cerebral veins: fluorescence histochemistry, electron microscopy, and in vitro reactivity. J Cereb Blood Flow Metab. 1983;3:226–30.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Allt G, Lawrenson JG. Pericytes: cell biology and pathology. Cells Tissues Organs. 2001;169:1–11.

    CAS  PubMed  CrossRef  Google Scholar 

  44. Takahashi A, Ushiki T, Abe K, Houkin K, Abe H. Cytoarchitecture of periendothelial cells in human cerebral venous vessels as compared with the scalp vein. A scanning electron microscopic study. Arch Histol Cytol. 1994;57:331–9.

    CAS  PubMed  CrossRef  Google Scholar 

  45. Tso MK, Macdonald RL. Acute microvascular changes after subarachnoid hemorrhage and transient global cerebral ischemia. Stroke Res Treat. 2013;2013:425281.

    PubMed  PubMed Central  Google Scholar 

  46. Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009;15:1031–7.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Ferrari-Dileo G, Davis EB, Anderson DR. Glaucoma, capillaries and pericytes. 3. Peptide hormone binding and influence on pericytes. Ophthalmologica. 1996;210:269–75.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Kawamura H, Kobayashi M, Li Q, Yamanishi S, Katsumura K, Minami M, Wu DM, Puro DG. Effects of angiotensin II on the pericyte-containing microvasculature of the rat retina. J Physiol. 2004;561:671–83.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  49. Matsugi T, Chen Q, Anderson DR. Contractile responses of cultured bovine retinal pericytes to angiotensin II. Arch Ophthalmol. 1997;115:1281–5.

    CAS  PubMed  CrossRef  Google Scholar 

  50. Murphy DD, Wagner RC. Differential contractile response of cultured microvascular pericytes to vasoactive agents. Microcirculation. 1994;1:121–8.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Edwards A, Cao C, Pallone TL. Cellular mechanisms underlying nitric oxide-induced vasodilation of descending vasa recta. Am J Physiol Renal Physiol. 2011;300:F441–56.

    CAS  PubMed  CrossRef  Google Scholar 

  52. Nakaizumi A, Puro DG. Vulnerability of the retinal microvasculature to hypoxia: role of polyamine-regulated K(ATP) channels. Invest Ophthalmol Vis Sci. 2011;52:9345–52.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  53. Donoghue L, Tyburski JG, Steffes CP, Wilson RF. Vascular endothelial growth factor modulates contractile response in microvascular lung pericytes. Am J Surg. 2006;191:349–52.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Harvey EH, Tyburski JG, Steffes CP, Carlin AM. Inhibition of heme oxygenase-1 in microvascular lung pericytes diminishes at high concentrations of an inflammatory mediator. Am Surg. 2004;70:141–45; discussion 145.

    PubMed  Google Scholar 

  55. Speyer CL, Steffes CP, Ram JL. Effects of vasoactive mediators on the rat lung pericyte: quantitative analysis of contraction on collagen lattice matrices. Microvasc Res. 1999;57:134–43.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Wang S, Cao C, Chen Z, Bankaitis V, Tzima E, Sheibani N, Burridge K. Pericytes regulate vascular basement membrane remodeling and govern neutrophil extravasation during inflammation. PLoS One. 2012;7:e45499.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  57. Anderson DR, Davis EB. Glaucoma, capillaries and pericytes. 5. Preliminary evidence that carbon dioxide relaxes pericyte contractile tone. Ophthalmologica. 1996;210:280–4.

    CAS  PubMed  CrossRef  Google Scholar 

  58. Chen Q, Anderson DR. Effect of CO2 on intracellular pH and contraction of retinal capillary pericytes. Invest Ophthalmol Vis Sci. 1997;38:643–51.

    CAS  PubMed  Google Scholar 

  59. Oishi K, Kamiyashiki T, Ito Y. Isometric contraction of microvascular pericytes from mouse brain parenchyma. Microvasc Res. 2007;73:20–8.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Wu DM, Kawamura H, Sakagami K, Kobayashi M, Puro DG. Cholinergic regulation of pericyte-containing retinal microvessels. Am J Physiol Heart Circ Physiol. 2003;284:H2083–90.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Kelley C, D’Amore P, Hechtman HB, Shepro D. Vasoactive hormones and cAMP affect pericyte contraction and stress fibres in vitro. J Muscle Res Cell Motil. 1988;9:184–94.

    CAS  PubMed  CrossRef  Google Scholar 

  62. Sims DE, Miller FN, Horne MM, Edwards MJ. Interleukin-2 alters the positions of capillary and venule pericytes in rat cremaster muscle. J Submicrosc Cytol Pathol. 1994;26:507–13.

    CAS  PubMed  Google Scholar 

  63. Yamanishi S, Katsumura K, Kobayashi T, Puro DG. Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am J Physiol Heart Circ Physiol. 2006;290:H925–34.

    CAS  PubMed  CrossRef  Google Scholar 

  64. Chakravarthy U, Gardiner TA, Anderson P, Archer DB, Trimble ER. The effect of endothelin 1 on the retinal microvascular pericyte. Microvasc Res. 1992;43:241–54.

    CAS  PubMed  CrossRef  Google Scholar 

  65. Ramachandran E, Frank RN, Kennedy A. Effects of endothelin on cultured bovine retinal microvascular pericytes. Invest Ophthalmol Vis Sci. 1993;34:586–95.

    CAS  PubMed  Google Scholar 

  66. Gillies MC, Su T. High glucose inhibits retinal capillary pericyte contractility in vitro. Invest Ophthalmol Vis Sci. 1993;34:3396–401.

    CAS  PubMed  Google Scholar 

  67. Wakisaka M, Kitazono T, Kato M, Nakamura U, Yoshioka M, Uchizono Y, Yoshinari M. Sodium-coupled glucose transporter as a functional glucose sensor of retinal microvascular circulation. Circ Res. 2001;88:1183–8.

    CAS  PubMed  CrossRef  Google Scholar 

  68. Miller FN, Sims DE. Contractile elements in the regulation of macromolecular permeability. Fed Proc. 1986;45:84–8.

    CAS  PubMed  Google Scholar 

  69. Fernandez N, Monge L, Garcia-Villalon AL, Garcia JL, Gomez B, Dieguez G. Endothelin-1-induced in vitro cerebral venoconstriction is mediated by endothelin ETA receptors. Eur J Pharmacol. 1995;294:483–90.

    CAS  PubMed  CrossRef  Google Scholar 

  70. Hardebo JE, Kahrstrom J, Owman C, Salford LG. Endothelin is a potent constrictor of human intracranial arteries and veins. Blood Vessels. 1989;26:249–53.

    CAS  PubMed  Google Scholar 

  71. Ishine T, Yu JG, Asada Y, Lee TJ. Nitric oxide is the predominant mediator for neurogenic vasodilation in porcine pial veins. J Pharmacol Exp Ther. 1999;289:398–404.

    CAS  PubMed  Google Scholar 

  72. Tomimoto H, Nishimura M, Suenaga T, Nakamura S, Akiguchi I, Wakita H, Kimura J, Mayer B. Distribution of nitric oxide synthase in the human cerebral blood vessels and brain tissues. J Cereb Blood Flow Metab. 1994;14:930–8.

    CAS  PubMed  CrossRef  Google Scholar 

  73. Pearce WJ, Bevan JA. Retroglenoid venoconstriction and its influence on canine intracranial venous pressures. J Cereb Blood Flow Metab. 1984;4:373–80.

    CAS  PubMed  CrossRef  Google Scholar 

  74. Monge L, Garcia-Villalon AL, Fernandez N, Garcia JL, Gomez B, Dieguez G. In vitro relaxation of dog cerebral veins in response to histamine is mediated by histamine H2 receptors. Eur J Pharmacol. 1997;338:135–41.

    CAS  PubMed  CrossRef  Google Scholar 

  75. Gross PM. Histamine H1- and H2-receptors are differentially and spatially distributed in cerebral vessels. J Cereb Blood Flow Metab. 1981;1:441–6.

    CAS  PubMed  CrossRef  Google Scholar 

  76. Edvinsson L, Emson P, McCulloch J, Tatemoto K, Uddman R. Neuropeptide Y: immunocytochemical localization to and effect upon feline pial arteries and veins in vitro and in situ. Acta Physiol Scand. 1984;122:155–63.

    CAS  PubMed  CrossRef  Google Scholar 

  77. Garcia JH, Liu KF, Yoshida Y, Chen S, Lian J. Brain microvessels: factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat). Am J Pathol. 1994;145:728–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Little JR, Kerr FWL, Sundt TM. Microcirculatory obstruction in focal cerebral ischemia: an electron microscopic investigation in monkeys. Stroke. 1976;7:25–30.

    CrossRef  PubMed  Google Scholar 

  79. Belayev L, Pinard E, Nallet H, Seylaz J, Liu Y, Riyamongkol P, Zhao W, Busto R, Ginsberg MD. Albumin therapy of transient focal cerebral ischemia: in vivo analysis of dynamic microvascular responses. Stroke. 2002;33:1077–84.

    PubMed  CrossRef  Google Scholar 

  80. del Zoppo GJ, Schmid-Schonbein GW, Mori E, Copeland BR, Chang CM. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke. 1991;22:1276–83.

    PubMed  CrossRef  Google Scholar 

  81. Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GJ. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol. 1994;144:188–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hallenbeck JM, Dutka AJ, Tanishima T, Kochanek PM, Kumaroo KK, Thompson CB, Obrenovitch TP, Contreras TJ. Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke. 1986;17:246–53.

    CAS  PubMed  CrossRef  Google Scholar 

  83. Ritter LS, Orozco JA, Coull BM, McDonagh PF, Rosenblum WI. Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke. Stroke. 2000;31:1153–61.

    CAS  PubMed  CrossRef  Google Scholar 

  84. Dalkara T, Arsava EM. Can restoring incomplete microcirculatory reperfusion improve stroke outcome after thrombolysis? J Cereb Blood Flow Metab. 2012;32:2091–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  85. Choudhri TF, Hoh BL, Zerwes HG, Prestigiacomo CJ, Kim SC, Connolly ES Jr, Kottirsch G, Pinsky DJ. Reduced microvascular thrombosis and improved outcome in acute murine stroke by inhibiting GP IIb/IIIa receptor-mediated platelet aggregation. J Clin Invest. 1998;102:1301–10.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  86. Liu S, Connor J, Peterson S, Shuttleworth CW, Liu KJ. Direct visualization of trapped erythrocytes in rat brain after focal ischemia and reperfusion. J Cereb Blood Flow Metab. 2002;22:1222–30.

    PubMed  CrossRef  Google Scholar 

  87. Morris DC, Davies K, Zhang Z, Chopp M. Measurement of cerebral microvessel diameters after embolic stroke in rat using quantitative laser scanning confocal microscopy. Brain Res. 2000;876:31–6.

    CAS  PubMed  CrossRef  Google Scholar 

  88. Zhang ZG, Chopp M, Goussev A, Lu D, Morris D, Tsang W, Powers C, Ho KL. Cerebral microvascular obstruction by fibrin is associated with upregulation of PAI-1 acutely after onset of focal embolic ischemia in rats. J Neurosci. 1999;19:10898–907.

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  89. Paciaroni M, Caso V, Agnelli G. The concept of ischemic penumbra in acute stroke and therapeutic opportunities. Eur Neurol. 2009;61:321–30.

    PubMed  CrossRef  Google Scholar 

  90. Meoded A, Poretti A, Benson JE, Tekes A, Huisman TA. Evaluation of the ischemic penumbra focusing on the venous drainage: the role of susceptibility weighted imaging (SWI) in pediatric ischemic cerebral stroke. J Neuroradiol. 2014;41:108.

    PubMed  CrossRef  Google Scholar 

  91. Nemoto EM. Dynamics of cerebral venous and intracranial pressures. Acta Neurochir Suppl. 2006;96:435–7.

    CAS  PubMed  CrossRef  Google Scholar 

  92. Ishikawa M, Zhang JH, Nanda A, Granger DN. Inflammatory responses to ischemia and reperfusion in the cerebral microcirculation. Front Biosci. 2004;9:1339–47.

    CAS  PubMed  CrossRef  Google Scholar 

  93. Ishikawa M, Cooper D, Arumugam TV, Zhang JH, Nanda A, Granger DN. Platelet-leukocyte-endothelial cell interactions after middle cerebral artery occlusion and reperfusion. J Cereb Blood Flow Metab. 2004;24:907–15.

    CAS  PubMed  CrossRef  Google Scholar 

  94. Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6:258–68.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  95. Rahemtullah A, Van Cott EM. Hypercoagulation testing in ischemic stroke. Arch Pathol Lab Med. 2007;131:890–901.

    CAS  PubMed  Google Scholar 

  96. Togay Isikay C, Kural AM, Erden I. Cerebral vein thrombosis as an exceptional cause of transient ischemic attack. J Stroke Cerebrovasc Dis. 2012;21:907.e909–12.

    CrossRef  Google Scholar 

  97. Nakase H, Nagata K, Otsuka H, Sakaki T, Kempski O. Local cerebral blood flow autoregulation following “asymptomatic” cerebral venous occlusion in the rat. J Neurosurg. 1998;89:118–24.

    CAS  PubMed  CrossRef  Google Scholar 

  98. Jacobs K, Moulin T, Bogousslavsky J, Woimant F, Dehaene I, Tatu L, Besson G, Assouline E, Casselman J. The stroke syndrome of cortical vein thrombosis. Neurology. 1996;47:376–82.

    CAS  PubMed  CrossRef  Google Scholar 

  99. Shih AY, Blinder P, Tsai PS, Friedman B, Stanley G, Lyden PD, Kleinfeld D. The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat Neurosci. 2013;16:55–63.

    CAS  PubMed  CrossRef  Google Scholar 

  100. Fischer EG, Ames A 3rd, Hedley-Whyte ET, O’Gorman S. Reassessment of cerebral capillary changes in acute global ischemia and their relationship to the “no-reflow phenomenon”. Stroke. 1977;8:36–9.

    CAS  PubMed  CrossRef  Google Scholar 

  101. Ito U, Ohno K, Yamaguchi T, Tomita H, Inaba Y, Kashima M. Transient appearance of “no-reflow” phenomenon in Mongolian gerbils. Stroke. 1980;11:517–21.

    CAS  PubMed  CrossRef  Google Scholar 

  102. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.

    CrossRef  PubMed  Google Scholar 

  103. Diringer MN. Intracerebral hemorrhage: pathophysiology and management. Crit Care Med. 1993;21:1591–603.

    CAS  PubMed  CrossRef  Google Scholar 

  104. Prabhakaran S, Naidech AM. Ischemic brain injury after intracerebral hemorrhage: a critical review. Stroke. 2012;43:2258–63.

    PubMed  CrossRef  Google Scholar 

  105. Morgenstern LB, Hemphill JC 3rd, Anderson C, Becker K, Broderick JP, Connolly ES Jr, Greenberg SM, Huang JN, MacDonald RL, Messe SR, Mitchell PH, Selim M, Tamargo RJ, American Heart Association Stroke Council and Council on Cardiovascular Nursing. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2010;41:2108–29.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  106. Gregoire SM, Charidimou A, Gadapa N, Dolan E, Antoun N, Peeters A, Vandermeeren Y, Laloux P, Baron JC, Jager HR, Werring DJ. Acute ischaemic brain lesions in intracerebral haemorrhage: multicentre cross-sectional magnetic resonance imaging study. Brain. 2011;134:2376–86.

    PubMed  CrossRef  Google Scholar 

  107. Kang DW, Han MK, Kim HJ, Yun SC, Jeon SB, Bae HJ, Kwon SU, Kim JS. New ischemic lesions coexisting with acute intracerebral hemorrhage. Neurology. 2012;79:848–55.

    PubMed  CrossRef  Google Scholar 

  108. Kimberly WT, Gilson A, Rost NS, Rosand J, Viswanathan A, Smith EE, Greenberg SM. Silent ischemic infarcts are associated with hemorrhage burden in cerebral amyloid angiopathy. Neurology. 2009;72:1230–5.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  109. Menon RS, Burgess RE, Wing JJ, Gibbons MC, Shara NM, Fernandez S, Jayam-Trouth A, German L, Sobotka I, Edwards D, Kidwell CS. Predictors of highly prevalent brain ischemia in intracerebral hemorrhage. Ann Neurol. 2012;71:199–205.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  110. Prabhakaran S, Gupta R, Ouyang B, John S, Temes RE, Mohammad Y, Lee VH, Bleck TP. Acute brain infarcts after spontaneous intracerebral hemorrhage: a diffusion-weighted imaging study. Stroke. 2010;41:89–94.

    PubMed  CrossRef  Google Scholar 

  111. Ziai WC. Hematology and inflammatory signaling of intracerebral hemorrhage. Stroke. 2013;44:S74–8.

    PubMed  CrossRef  Google Scholar 

  112. Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92:463–77.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  113. Hua Y, Keep RF, Hoff JT, Xi G. Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke. 2007;38:759–62.

    CAS  PubMed  CrossRef  Google Scholar 

  114. Bateman GA. Association between arterial inflow and venous outflow in idiopathic and secondary intracranial hypertension. J Clin Neurosci. 2006;13:550–6; discussion 557.

    PubMed  CrossRef  Google Scholar 

  115. Etminan N. Aneurysmal subarachnoid hemorrhage—status quo and perspective. Transl Stroke Res. 2015;6:167–70.

    PubMed  CrossRef  Google Scholar 

  116. Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol. 2007;3:256–63.

    CAS  PubMed  CrossRef  Google Scholar 

  117. Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I, Bach D, Frey A, Marr A, Roux S, Kassell N. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol. 2011;10:618–25.

    CAS  PubMed  CrossRef  Google Scholar 

  118. Macdonald RL, Kassell NF, Mayer S, Ruefenacht D, Schmiedek P, Weidauer S, Frey A, Roux S, Pasqualin A, CONSCIOUS-1 Investigators. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke. 2008;39:3015–21.

    CAS  PubMed  CrossRef  Google Scholar 

  119. Cahill J, Zhang JH. Subarachnoid hemorrhage: is it time for a new direction? Stroke. 2009;40:S86–7.

    PubMed  CrossRef  Google Scholar 

  120. Sehba FA, Pluta RM, Zhang JH. Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol. 2011;43:27–40.

    CAS  PubMed  CrossRef  Google Scholar 

  121. Suzuki H. What is early brain injury? Transl Stroke Res. 2015;6:1–3.

    PubMed  CrossRef  Google Scholar 

  122. Lo EH, Rosenberg GA. The neurovascular unit in health and disease: introduction. Stroke. 2009;40:S2–3.

    PubMed  CrossRef  Google Scholar 

  123. Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, Zhang J, Tang J, Zhang JH. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol. 2014;115:64–91.

    PubMed  CrossRef  Google Scholar 

  124. Chen G, Tariq A, Ai J, Sabri M, Jeon HJ, Tang EJ, Lakovic K, Wan H, Macdonald RL. Different effects of clazosentan on consequences of subarachnoid hemorrhage in rats. Brain Res. 2011;1392:132–9.

    CAS  PubMed  CrossRef  Google Scholar 

  125. Dai Z, Deng X, Zhang Z, Zhu Y, Zhang Y, Li D, Luo X, Mo Z, Han H. MRI study of deep cerebral veins after subarachniod hemorrhage in rabbits. Chin J Clin Anat. 2012;30:176–80.

    Google Scholar 

  126. Friedrich B, Muller F, Feiler S, Scholler K, Plesnila N. Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study. J Cereb Blood Flow Metab. 2012;32:447–55.

    CAS  PubMed  CrossRef  Google Scholar 

  127. Perkins E, Kimura H, Parent AD, Zhang JH. Evaluation of the microvasculature and cerebral ischemia after experimental subarachnoid hemorrhage in dogs. J Neurosurg. 2002;97:896–904.

    PubMed  CrossRef  Google Scholar 

  128. Sun BL, Zheng CB, Yang MF, Yuan H, Zhang SM, Wang LX. Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage. Cell Mol Neurobiol. 2009;29:235–41.

    PubMed  CrossRef  Google Scholar 

  129. Uhl E, Lehmberg J, Steiger HJ, Messmer K. Intraoperative detection of early microvasospasm in patients with subarachnoid hemorrhage by using orthogonal polarization spectral imaging. Neurosurgery. 2003;52:1307–15; disacussion 1315-1307.

    PubMed  CrossRef  Google Scholar 

  130. Ishikawa M, Kusaka G, Yamaguchi N, Sekizuka E, Nakadate H, Minamitani H, Shinoda S, Watanabe E. Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage. Neurosurgery. 2009;64:546–53; discussion 553-544.

    PubMed  CrossRef  Google Scholar 

  131. Bittencourt LK, Palma-Filho F, Domingues RC, Gasparetto EL. Subarachnoid hemorrhage in isolated cortical vein thrombosis: are presentation of an unusual condition. Arq Neuropsiquiatr. 2009;67:1106–8.

    PubMed  CrossRef  Google Scholar 

  132. Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26:1341–53.

    CAS  PubMed  CrossRef  Google Scholar 

  133. Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol. 2012;97:14–37.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  134. Okubo S, Strahle J, Keep RF, Hua Y, Xi G. Subarachnoid hemorrhage-induced hydrocephalus in rats. Stroke. 2013;44:547–50.

    PubMed  CrossRef  Google Scholar 

  135. Shah AH, Komotar RJ. Pathophysiology of acute hydrocephalus following subarachnoid hemorrhage. World Neurosurg. 2013;80:304.

    PubMed  CrossRef  Google Scholar 

  136. Csokay A, Pataki G, Nagy L, Belan K. Vascular tunnel construction in the treatment of severe brain swelling caused by trauma and SAH. (evidence based on intra-operative blood flow measure). Neurol Res. 2002;24:157–60.

    PubMed  CrossRef  Google Scholar 

  137. Benabu Y, Mark L, Daniel S, Glikstein R. Cerebral venous thrombosis presenting with subarachnoid hemorrhage. Case report and review. Am J Emerg Med. 2009;27:96–106.

    PubMed  CrossRef  Google Scholar 

  138. El Otmani H, Moutaouakil F, Fadel H, Slassi I. [Subarachnoid hemorrhage induced by cerebral venous thrombosis]. J Mal Vasc. 2012;37:323–25.

    Google Scholar 

  139. Kato Y, Takeda H, Furuya D, Nagoya H, Deguchi I, Fukuoka T, Tanahashi N. Subarachnoid hemorrhage as the initial presentation of cerebral venous thrombosis. Intern Med. 2010;49:467–70.

    PubMed  CrossRef  Google Scholar 

  140. Shukla R, Vinod P, Prakash S, Phadke RV, Gupta RK. Subarachnoid haemorrhage as a presentation of cerebral venous sinus thrombosis. J Assoc Physicians India. 2006;54:42–4.

    CAS  PubMed  Google Scholar 

  141. Shad A, Rourke TJ, Hamidian Jahromi A, Green AL. Straight sinus stenosis as a proposed cause of perimesencephalic non-aneurysmal haemorrhage. J Clin Neurosci. 2008;15:839–41.

    PubMed  CrossRef  Google Scholar 

  142. Lee J, Koh EM, Chung CS, Hong SC, Kim YB, Chung PW, Suh BC, Moon HS. Underlying venous pathology causing perimesencephalic subarachnoid hemorrhage. Can J Neurol Sci. 2009;36:638–42.

    PubMed  CrossRef  Google Scholar 

  143. Mathews MS, Brown D, Brant-Zawadzki M. Perimesencephalic nonaneurysmal hemorrhage associated with vein of Galen stenosis. Neurology. 2008;70:2410–1.

    PubMed  CrossRef  Google Scholar 

  144. Sangra MS, Teasdale E, Siddiqui MA, Lindsay KW. Perimesencephalic nonaneurysmal subarachnoid hemorrhage caused by jugular venous occlusion: case report. Neurosurgery. 2008;63:E1202–3; discussion E1203.

    PubMed  CrossRef  Google Scholar 

  145. Alen JF, Lagares A, Campollo J, Ballenilla F, Kaen A, Nunez AP, Lobato RD. Idiopathic subarachnoid hemorrhage and venous drainage: are they related? Neurosurgery. 2008;63:1106–11; discussion 1111-1102.

    PubMed  CrossRef  Google Scholar 

  146. Kawamura Y, Narumi O, Chin M, Yamagata S. Variant deep cerebral venous drainage in idiopathic subarachnoid hemorrhage. Neurol Med Chir (Tokyo). 2011;51:97–100.

    CrossRef  Google Scholar 

  147. Song JN, Chen H, Zhang M, Zhao YL, Ma XD. Dynamic change in cerebral microcirculation and focal cerebral metabolism in experimental subarachnoid hemorrhage in rabbits. Metab Brain Dis. 2013;28:33–43.

    CAS  PubMed  CrossRef  Google Scholar 

  148. van der Schaaf IC, Velthuis BK, Gouw A, Rinkel GJ. Venous drainage in perimesencephalic hemorrhage. Stroke. 2004;35:1614–8.

    PubMed  CrossRef  Google Scholar 

  149. Yamakawa H, Ohe N, Yano H, Yoshimura S, Iwama T. Venous drainage patterns in perimesencephalic nonaneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg. 2008;110:587–91.

    PubMed  CrossRef  Google Scholar 

  150. Hashiguchi A, Mimata C, Ichimura H, Morioka M, Kuratsu J. Venous aneurysm development associated with a dural arteriovenous fistula of the anterior cranial fossa with devastating hemorrhage—case report. Neurol Med Chir (Tokyo). 2007;47:70–3.

    CrossRef  Google Scholar 

  151. Matsuyama T, Okuchi K, Seki T, Higuchi T, Murao Y. Perimesencephalic nonaneurysmal subarachnoid hemorrhage caused by physical exertion. Neurol Med Chir (Tokyo). 2006;46:277–81; discussion 281-272.

    CrossRef  Google Scholar 

  152. Czorlich P, Skevas C, Knospe V, Vettorazzi E, Richard G, Wagenfeld L, Westphal M, Regelsberger J. Terson syndrome in subarachnoid hemorrhage, intracerebral hemorrhage, and traumatic brain injury. Neurosurg Rev. 2015;38:129–36; discussion 136.

    PubMed  CrossRef  Google Scholar 

  153. Czorlich P, Skevas C, Knospe V, Vettorazzi E, Westphal M, Regelsberger J. Terson’s syndrome—pathophysiologic considerations of an underestimated concomitant disease in aneurysmal subarachnoid hemorrhage. J Clin Neurosci. 2016;33:182–6.

    PubMed  CrossRef  Google Scholar 

  154. Gutierrez Diaz A, Jimenez Carmena J, Ruano Martin F, Diaz Lopez P, Munoz Casado MJ. Intraocular hemorrhage in sudden increased intracranial pressure (Terson syndrome). Ophthalmologica. 1979;179:173–6.

    CAS  PubMed  CrossRef  Google Scholar 

  155. Joswig H, Epprecht L, Valmaggia C, Leschka S, Hildebrandt G, Fournier JY, Stienen MN. Terson syndrome in aneurysmal subarachnoid hemorrhage-its relation to intracranial pressure, admission factors, and clinical outcome. Acta Neurochir. 2016;158:1027–36.

    PubMed  CrossRef  Google Scholar 

  156. Prins M, Greco T, Alexander D, Giza CC. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech. 2013;6:1307.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  157. Arbour RB. Traumatic brain injury: pathophysiology, monitoring, and mechanism-based care. Crit Care Nurs Clin North Am. 2013;25:297–319.

    PubMed  CrossRef  Google Scholar 

  158. Mustafa AG, Alshboul OA. Pathophysiology of traumatic brain injury. Neurosciences (Riyadh). 2013;18:222–34.

    Google Scholar 

  159. Roth P, Farls K. Pathophysiology of traumatic brain injury. Crit Care Nurs Q. 2000;23:14–25; quiz 65.

    CAS  PubMed  CrossRef  Google Scholar 

  160. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99:4–9.

    CAS  PubMed  CrossRef  Google Scholar 

  161. Golding EM, Robertson CS, Bryan RM Jr. The consequences of traumatic brain injury on cerebral blood flow and autoregulation: a review. Clin Exp Hypertens. 1999;21:299–332.

    CAS  PubMed  CrossRef  Google Scholar 

  162. Grundl PD, Biagas KV, Kochanek PM, Schiding JK, Barmada MA, Nemoto EM. Early cerebrovascular response to head injury in immature and mature rats. J Neurotrauma. 1994;11:135–48.

    CAS  PubMed  CrossRef  Google Scholar 

  163. Yamakami I, McIntosh TK. Alterations in regional cerebral blood flow following brain injury in the rat. J Cereb Blood Flow Metab. 1991;11:655–60.

    CAS  PubMed  CrossRef  Google Scholar 

  164. Maxwell WL, Irvine A, Adams JH, Graham DI, Gennarelli TA. Response of cerebral microvasculature to brain injury. J Pathol. 1988;155:327–35.

    CAS  PubMed  CrossRef  Google Scholar 

  165. Xu RX, Yi SY, Wang BY. Experimental evaluation of blood-brain barrier permeability using colloidal gold particles as tracers in early-stage brain injury. Chin Med J. 1991;104:634–8.

    CAS  PubMed  Google Scholar 

  166. Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res. 2011;2:492–516.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  167. Dietrich WD, Alonso O, Halley M. Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats. J Neurotrauma. 1994;11:289–301.

    CAS  PubMed  CrossRef  Google Scholar 

  168. Hartl R, Medary M, Ruge M, Arfors KE, Ghajar J. Blood-brain barrier breakdown occurs early after traumatic brain injury and is not related to white blood cell adherence. Acta Neurochir Suppl. 1997;70:240–2.

    CAS  PubMed  Google Scholar 

  169. Dimopoulou I, Tsagarakis S, Kouyialis AT, Roussou P, Assithianakis G, Christoforaki M, Ilias I, Sakas DE, Thalassinos N, Roussos C. Hypothalamic-pituitary-adrenal axis dysfunction in critically ill patients with traumatic brain injury: incidence, pathophysiology, and relationship to vasopressor dependence and peripheral interleukin-6 levels. Crit Care Med. 2004;32:404–8.

    CAS  PubMed  CrossRef  Google Scholar 

  170. Samadani U, Reyes-Moreno I, Buchfelder M. Endocrine dysfunction following traumatic brain injury: mechanisms, pathophysiology and clinical correlations. Acta Neurochir Suppl. 2005;93:121–5.

    CAS  PubMed  CrossRef  Google Scholar 

  171. Zacest AC, Vink R, Manavis J, Sarvestani GT, Blumbergs PC. Substance P immunoreactivity increases following human traumatic brain injury. Acta Neurochir Suppl. 2010;106:211–6.

    PubMed  CrossRef  Google Scholar 

  172. Stein SC, Chen XH, Sinson GP, Smith DH. Intravascular coagulation: a major secondary insult in nonfatal traumatic brain injury. J Neurosurg. 2002;97:1373–7.

    PubMed  CrossRef  Google Scholar 

  173. Schwarzmaier SM, Kim SW, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma. 2010;27:121–30.

    PubMed  CrossRef  Google Scholar 

  174. Chung CP, Hu HH. Pathogenesis of leukoaraiosis: role of jugular venous reflux. Med Hypotheses. 2010;75:85–90.

    PubMed  CrossRef  Google Scholar 

  175. Burger R, Duncker D, Uzma N, Rohde V. Decompressive craniotomy: durotomy instead of duroplasty to reduce prolonged ICP elevation. Acta Neurochir Suppl. 2008;102:93–7.

    PubMed  CrossRef  Google Scholar 

  176. Sindou M, Auque J, Jouanneau E. Neurosurgery and the intracranial venous system. Acta Neurochir Suppl. 2005;94:167–75.

    CAS  PubMed  CrossRef  Google Scholar 

  177. Tubbs RS, Louis RG Jr, Song YB, Mortazavi M, Loukas M, Shoja MM, Cohen-Gadol AA. External landmarks for identifying the drainage site of the vein of Labbe: application to neurosurgical procedures. Br J Neurosurg. 2012;26:383–5.

    PubMed  CrossRef  Google Scholar 

  178. Ryu CW, Koh JS, Yu SY, Kim EJ. Vasogenic edema of the Basal Ganglia after intra-arterial administration of nimodipine for treatment of vasospasm. J Korean Neurosurg Soc. 2011;49:112–5.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  179. Mayhan WG, Werber AH, Heistad DD. Protection of cerebral vessels by sympathetic nerves and vascular hypertrophy. Circulation. 1987;75:I107–12.

    CAS  PubMed  Google Scholar 

  180. Li G, Zeng X, Ji T, Fredrickson V, Wang T, Hussain M, Ren C, Chen J, Sikhram C, Ding Y, Ji X. A new thrombosis model of the superior sagittal sinus involving cortical veins. World Neurosurg. 2012;82:169.

    PubMed  CrossRef  Google Scholar 

  181. Rahal JP, Malek AM, Heilman CB. Toward a better model of cerebral venous sinus thrombosis. World Neurosurg. 2014;82:50.

    PubMed  CrossRef  Google Scholar 

  182. Wang J, Ji X, Ling F, Luo Y, He X, Guo M, Li S, Miao Z, Zhu F, Xuan Y. A new model of reversible superior sagittal sinus thrombosis in rats. Brain Res. 2007;1181:118–24.

    CAS  PubMed  CrossRef  Google Scholar 

  183. Rottger C, Bachmann G, Gerriets T, Kaps M, Kuchelmeister K, Schachenmayr W, Walberer M, Wessels T, Stolz E. A new model of reversible sinus sagittalis superior thrombosis in the rat: magnetic resonance imaging changes. Neurosurgery. 2005;57:573–80; discussion 573-580.

    CrossRef  PubMed  Google Scholar 

  184. Wang J, Tan HQ, Li MH, Sun XJ, Fu CM, Zhu YQ, Zhou B, Xu HW, Wang W, Xue B. Development of a new model of transvenous thrombosis in the pig superior sagittal sinus using thrombin injection and balloon occlusion. J Neuroradiol. 2010;37:109–15.

    CAS  PubMed  CrossRef  Google Scholar 

  185. Miyamoto K, Heimann A, Kempski O. Microcirculatory alterations in a Mongolian gerbil sinus-vein thrombosis model. J Clin Neurosci. 2001;8(Suppl 1):97–105.

    PubMed  CrossRef  Google Scholar 

  186. Nakase H, Kakizaki T, Miyamoto K, Hiramatsu K, Sakaki T. Use of local cerebral blood flow monitoring to predict brain damage after disturbance to the venous circulation: cortical vein occlusion model by photochemical dye. Neurosurgery. 1995;37:280–5; discussion 285-286.

    CAS  CrossRef  PubMed  Google Scholar 

  187. Takeshima Y, Nakamura M, Miyake H, Tamaki R, Inui T, Horiuchi K, Wajima D, Nakase H. Neuroprotection with intraventricular brain-derived neurotrophic factor in rat venous occlusion model. Neurosurgery. 2011;68:1334–41.

    PubMed  CrossRef  Google Scholar 

  188. Wajima D, Nakamura M, Horiuchi K, Miyake H, Takeshima Y, Tamura K, Motoyama Y, Konishi N, Nakase H. Enhanced cerebral ischemic lesions after two-vein occlusion in diabetic rats. Brain Res. 2010;1309:126–35.

    CAS  PubMed  CrossRef  Google Scholar 

  189. Aydin K, Cokluk C, Ayas B, Onger ME, Keskin I, Ozyasar A, Aslan H, Kaplan S. Hippocampal cell loss after an anterior and posterior anastomotic vein occlusion model in rats. Int J Dev Neurosci. 2011;29:717–22.

    PubMed  CrossRef  Google Scholar 

  190. Cokluk C, Aydin K, Korkmaz A, Senel A, Iyigun O, Onder A. A model of unilateral cerebral anterior and posterior anastomotic vein occlusion in the rat. Minim Invasive Neurosurg. 2005;48:149–53.

    CAS  PubMed  CrossRef  Google Scholar 

  191. Cokluk C, Aydin K, Yemisci M, Colakoglu S, Kaplan S. Cortical anastomotic veins occlusion in the rat including the assessment of cerebral swelling. J Neurosci Methods. 2006;156:203–10.

    PubMed  CrossRef  Google Scholar 

  192. Lavoie P, Metellus P, Velly L, Vidal V, Rolland PH, Mekaouche M, Dubreuil G, Levrier O. Functional cerebral venous outflow in swine and baboon: feasibility of an intracranial venous hypertension model. J Invest Surg. 2008;21:323–9.

    PubMed  CrossRef  Google Scholar 

  193. Kojima T, Miyachi S, Sahara Y, Nakai K, Okamoto T, Hattori K, Kobayashi N, Hattori K, Negoro M, Yoshida J. The relationship between venous hypertension and expression of vascular endothelial growth factor: hemodynamic and immunohistochemical examinations in a rat venous hypertension model. Surg Neurol. 2007;68:277–84; discussion 284.

    CrossRef  PubMed  Google Scholar 

  194. Yamada M, Yuzawa I, Fujii K, Miyasaka Y. Chronic cerebral venous hypertension model in rats. Neurol Res. 2003;25:694–6.

    PubMed  CrossRef  Google Scholar 

  195. Chaigneau E, Oheim M, Audinat E, Charpak S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Natl Acad Sci U S A. 2003;100:13081–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  196. Lecoq J, Parpaleix A, Roussakis E, Ducros M, Goulam Houssen Y, Vinogradov SA, Charpak S. Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nat Med. 2011;17:893–8.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  197. Parpaleix A, Goulam Houssen Y, Charpak S. Imaging local neuronal activity by monitoring PO(2) transients in capillaries. Nat Med. 2013;19:241–6.

    CAS  PubMed  CrossRef  Google Scholar 

  198. Shih AY, Driscoll JD, Drew PJ, Nishimura N, Schaffer CB, Kleinfeld D. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab. 2012;32:1277–309.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  199. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau RG. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999;5:1209–12.

    CAS  PubMed  CrossRef  Google Scholar 

  200. Pennings FA, Bouma GJ, Ince C. Direct observation of the human cerebral microcirculation during aneurysm surgery reveals increased arteriolar contractility. Stroke. 2004;35:1284–8.

    PubMed  CrossRef  Google Scholar 

  201. Thomale UW, Schaser KD, Unterberg AW, Stover JF. Visualization of rat pial microcirculation using the novel orthogonal polarized spectral (OPS) imaging after brain injury. J Neurosci Methods. 2001;108:85–90.

    CAS  PubMed  CrossRef  Google Scholar 

  202. Zamboni P, Sisini F, Menegatti E, Taibi A, Malagoni AM, Morovic S, Gambaccini M. An ultrasound model to calculate the brain blood outflow through collateral vessels: a pilot study. BMC Neurol. 2013;13:81.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  203. van Raaij ME, Lindvere L, Dorr A, He J, Sahota B, Foster FS, Stefanovic B. Quantification of blood flow and volume in arterioles and venules of the rat cerebral cortex using functional micro-ultrasound. NeuroImage. 2012;63:1030–7.

    PubMed  CrossRef  Google Scholar 

  204. Zamboni P, Menegatti E, Conforti P, Shepherd S, Tessari M, Beggs C. Assessment of cerebral venous return by a novel plethysmography method. J Vasc Surg. 2012;56:677–685.e671.

    PubMed  CrossRef  Google Scholar 

  205. Langheinrich AC, Yeniguen M, Ostendorf A, Marhoffer S, Dierkes C, von Gerlach S, Nedelmann M, Kampschulte M, Bachmann G, Stolz E, Gerriets T. In vitro evaluation of the sinus sagittalis superior thrombosis model in the rat using 3D micro- and nanocomputed tomography. Neuroradiology. 2010;52:815–21.

    PubMed  CrossRef  Google Scholar 

  206. Tsui YK, Tsai FY, Hasso AN, Greensite F, Nguyen BV. Susceptibility-weighted imaging for differential diagnosis of cerebral vascular pathology: a pictorial review. J Neurol Sci. 2009;287:7–16.

    PubMed  CrossRef  Google Scholar 

  207. Liebeskind DS. Collateral circulation. Stroke. 2003;34:2279–84.

    PubMed  CrossRef  Google Scholar 

  208. Albers GW. Impact of recanalization, reperfusion, and collateral flow on clinical efficacy. Stroke. 2013;44:S11–2.

    PubMed  CrossRef  Google Scholar 

  209. Marks MP, Lansberg MG, Mlynash M, Olivot JM, Straka M, Kemp S, McTaggart R, Inoue M, Zaharchuk G, Bammer R, Albers GW, Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution 2 Investigators. Effect of collateral blood flow on patients undergoing endovascular therapy for acute ischemic stroke. Stroke. 2014;45:1035–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  210. Pandey AS, Thompson BG, Gemmete JJ, Chaudhary N. Cerebral collateral circulation: integral to defining clinical outcome in acute cerebral ischemia. World Neurosurg. 2012;77:240–2.

    PubMed  CrossRef  Google Scholar 

  211. Ramakrishnan G, Dong B, Todd KG, Shuaib A, Winship IR. Transient aortic occlusion augments collateral blood flow and reduces mortality during severe ischemia due to proximal middle cerebral artery occlusion. Transl Stroke Res. 2016;7:149–55.

    CAS  PubMed  CrossRef  Google Scholar 

  212. Shuaib A, Butcher K, Mohammad AA, Saqqur M, Liebeskind DS. Collateral blood vessels in acute ischaemic stroke: a potential therapeutic target. Lancet Neurol. 2011;10:909–21.

    PubMed  CrossRef  Google Scholar 

  213. Winship IR. Cerebral collaterals and collateral therapeutics for acute ischemic stroke. Microcirculation. 2015;22:228–36.

    PubMed  CrossRef  Google Scholar 

  214. Yeo LL, Paliwal P, Low AF, Tay EL, Gopinathan A, Nadarajah M, Ting E, Venketasubramanian N, Seet RC, Ahmad A, Chan BP, Teoh HL, Soon D, Rathakrishnan R, Sharma VK. How temporal evolution of intracranial collaterals in acute stroke affects clinical outcomes. Neurology. 2016;86:434–41.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  215. Edwards EA. Scope and limitations of collateral circulation. Presidential address. Arch Surg. 1984;119:761–5.

    CAS  PubMed  CrossRef  Google Scholar 

  216. Bullock R, Mendelow AD, Bone I, Patterson J, Macleod WN, Allardice G. Cerebral blood flow and CO2 responsiveness as an indicator of collateral reserve capacity in patients with carotid arterial disease. Br J Surg. 1985;72:348–51.

    CAS  PubMed  CrossRef  Google Scholar 

  217. Katz I, Palgen M, Murdock J, Martin AR, Farjot G, Caillibotte G. Gas transport during in vitro and in vivo preclinical testing of inert gas therapies. Med Gas Res. 2016;6:14–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  218. Coyle P. Interruption of the middle cerebral artery in 10-day-old rat alters normal development of distal collaterals. Anat Rec. 1985;212:179–82.

    CAS  PubMed  CrossRef  Google Scholar 

  219. Coyle P, Heistad DD. Blood flow through cerebral collateral vessels one month after middle cerebral artery occlusion. Stroke. 1987;18:407–11.

    CAS  PubMed  CrossRef  Google Scholar 

  220. Wei L, Erinjeri JP, Rovainen CM, Woolsey TA. Collateral growth and angiogenesis around cortical stroke. Stroke. 2001;32:2179–84.

    CAS  PubMed  CrossRef  Google Scholar 

  221. Matsushima Y, Inaba Y. The specificity of the collaterals to the brain through the study and surgical treatment of moyamoya disease. Stroke. 1986;17:117–22.

    CAS  PubMed  CrossRef  Google Scholar 

  222. Rosengren K. Moya-Moya vessels. Collateral arteries of the basal ganglia. Malignant occlusion of the anterior cerebral arteries. Acta Radiol Diagn (Stockh). 1974;15:145–51.

    CAS  CrossRef  Google Scholar 

  223. Andeweg J. The anatomy of collateral venous flow from the brain and its value in aetiological interpretation of intracranial pathology. Neuroradiology. 1996;38:621–8.

    CAS  PubMed  CrossRef  Google Scholar 

  224. Mikhailov SS, Kagan II. The anastomoses of the venous system of the brain and their role in the collateral circulation. Folia Morphol (Praha). 1968;16:10–8.

    CAS  Google Scholar 

  225. Barboza MA, Mejias C, Colin-Luna J, Quiroz-Compean A, Arauz A. Intracranial venous collaterals in cerebral venous thrombosis: clinical and imaging impact. J Neurol Neurosurg Psychiatry. 2015;86:1314–8.

    PubMed  CrossRef  Google Scholar 

  226. Zamboni P, Consorti G, Galeotti R, Gianesini S, Menegatti E, Tacconi G, Carinci F. Venous collateral circulation of the extracranial cerebrospinal outflow routes. Curr Neurovasc Res. 2009;6:204–12.

    PubMed  CrossRef  Google Scholar 

  227. Liebeskind DS. Reperfusion for acute ischemic stroke: arterial revascularization and collateral therapeutics. Curr Opin Neurol. 2010;23:36–45.

    PubMed  CrossRef  Google Scholar 

  228. Bang OY, Saver JL, Kim SJ, Kim GM, Chung CS, Ovbiagele B, Lee KH, Liebeskind DS. Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke. 2011;42:693–9.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  229. Bang OY, Saver JL, Kim SJ, Kim GM, Chung CS, Ovbiagele B, Lee KH, Liebeskind DS, UCLA-Samsung Stroke Collaborators. Collateral flow averts hemorrhagic transformation after endovascular therapy for acute ischemic stroke. Stroke. 2011;42:2235–9.

    PubMed  CrossRef  Google Scholar 

  230. Weber J, Vida M, Greiner K. Sagittal sinus thrombosis with malignant brain oedema: pathophysiology of cortical veins after decompressive craniectomy. Acta Neurochir. 2013;155:651–3.

    PubMed  CrossRef  Google Scholar 

  231. Miteff F, Levi CR, Bateman GA, Spratt N, McElduff P, Parsons MW. The independent predictive utility of computed tomography angiographic collateral status in acute ischaemic stroke. Brain. 2009;132:2231–8.

    PubMed  CrossRef  Google Scholar 

  232. Ma J, Ma Y, Dong B, Bandet MV, Shuaib A, Winship IR. Prevention of the collapse of pial collaterals by remote ischemic perconditioning during acute ischemic stroke. J Cereb Blood Flow Metab. 2017;37:3001.

    PubMed  CrossRef  Google Scholar 

  233. Qiu ZD, Deng G, Yang J, Min Z, Li DY, Fang Y, Zhang SM. A new method for evaluating regional cerebral blood flow changes: laser speckle contrast imaging in a C57BL/6J mouse model of photothrombotic ischemia. J Huazhong Univ Sci Technolog Med Sci. 2016;36:174–80.

    CAS  PubMed  CrossRef  Google Scholar 

  234. Schaffer CB, Friedman B, Nishimura N, Schroeder LF, Tsai PS, Ebner FF, Lyden PD, Kleinfeld D. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol. 2006;4:e22.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  235. Yuan F, Lin X, Guan Y, Mu Z, Chen K, Wang Y, Yang GY. Collateral circulation prevents masticatory muscle impairment in rat middle cerebral artery occlusion model. J Synchrotron Radiat. 2014;21:1314–8.

    PubMed  CrossRef  Google Scholar 

  236. Zhang M, Peng G, Sun D, Xie Y, Xia J, Long H, Hu K, Xiao B. Synchrotron radiation imaging is a powerful tool to image brain microvasculature. Med Phys. 2014;41:031907.

    PubMed  CrossRef  Google Scholar 

  237. Li A, Gong H, Zhang B, Wang Q, Yan C, Wu J, Liu Q, Zeng S, Luo Q. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science. 2010;330:1404–8.

    CAS  PubMed  CrossRef  Google Scholar 

  238. Xue S, Gong H, Jiang T, Luo W, Meng Y, Liu Q, Chen S, Li A. Indian-ink perfusion based method for reconstructing continuous vascular networks in whole mouse brain. PLoS One. 2014;9:e88067.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  239. Moss G. The adequacy of the cerebral collateral circulation: tolerance of awake experimental animals to acute bilateral common carotid artery occlusion. J Surg Res. 1974;16:337–8.

    CAS  PubMed  CrossRef  Google Scholar 

  240. Shimizu F, Sano Y, Maeda T, Abe MA, Nakayama H, Takahashi R, Ueda M, Ohtsuki S, Terasaki T, Obinata M, Kanda T. Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells. J Cell Physiol. 2008;217:388–99.

    CAS  PubMed  CrossRef  Google Scholar 

  241. Altay O, Suzuki H, Hasegawa Y, Caner B, Krafft PR, Fujii M, Tang J, Zhang JH. Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke. 2012;43:2513–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  242. Suzuki H, Hasegawa Y, Kanamaru K, Zhang JH. Mechanisms of osteopontin-induced stabilization of blood-brain barrier disruption after subarachnoid hemorrhage in rats. Stroke. 2010;41:1783–90.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  243. Yan J, Manaenko A, Chen S, Klebe D, Ma Q, Caner B, Fujii M, Zhou C, Zhang JH. Role of SCH79797 in maintaining vascular integrity in rat model of subarachnoid hemorrhage. Stroke. 2013;44:1410–7.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  244. Zhan Y, Krafft PR, Lekic T, Ma Q, Souvenir R, Zhang JH, Tang J. Imatinib preserves blood-brain barrier integrity following experimental subarachnoid hemorrhage in rats. J Neurosci Res. 2015;93:94–103.

    CAS  PubMed  CrossRef  Google Scholar 

  245. Chen Y, Zhang Y, Tang J, Liu F, Hu Q, Luo C, Tang J, Feng H, Zhang JH. Norrin protected blood-brain barrier via frizzled-4/beta-catenin pathway after subarachnoid hemorrhage in rats. Stroke. 2015;46:529–36.

    CAS  PubMed  CrossRef  Google Scholar 

  246. Greif DM, Eichmann A. Vascular biology: brain vessels squeezed to death. Nature. 2014;508:50–1.

    CAS  PubMed  CrossRef  Google Scholar 

  247. O’Farrell FM, Attwell D. A role for pericytes in coronary no-reflow. Nat Rev Cardiol. 2014;11:427–32.

    PubMed  CrossRef  Google Scholar 

  248. Johshita H, Kassell NF, Sasaki T, Ogawa H. Impaired capillary perfusion and brain edema following experimental subarachnoid hemorrhage: a morphometric study. J Neurosurg. 1990;73:410–7.

    CAS  PubMed  CrossRef  Google Scholar 

  249. Ohkuma H, Itoh K, Shibata S, Suzuki S. Morphological changes of intraparenchymal arterioles after experimental subarachnoid hemorrhage in dogs. Neurosurgery. 1997;41:230–5; discussion 235-236.

    CAS  PubMed  CrossRef  Google Scholar 

  250. Li Q, Chen Y, Li B, Luo C, Zuo S, Liu X, Zhang JH, Ruan H, Feng H. Hemoglobin induced NO/cGMP suppression deteriorate microcirculation via pericyte phenotype transformation after subarachnoid hemorrhage in rats. Sci Rep. 2016;6:22070.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  251. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19:1584–96.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  252. Spokoyny I, Raman R, Ernstrom K, Demaerschalk BM, Lyden PD, Hemmen TM, Guzik AK, Chen JY, Meyer BC. Pooled assessment of computed tomography interpretation by vascular neurologists in the STRokE DOC telestroke network. J Stroke Cerebrovasc Dis. 2014;23:511–5.

    PubMed  CrossRef  Google Scholar 

  253. Hagedorn M, Balke M, Schmidt A, Bloch W, Kurz H, Javerzat S, Rousseau B, Wilting J, Bikfalvi A. VEGF coordinates interaction of pericytes and endothelial cells during vasculogenesis and experimental angiogenesis. Dev Dyn. 2004;230:23–33.

    CAS  PubMed  CrossRef  Google Scholar 

  254. Sinha S, Hoofnagle MH, Kingston PA, McCanna ME, Owens GK. Transforming growth factor-beta1 signaling contributes to development of smooth muscle cells from embryonic stem cells. Am J Physiol Cell Physiol. 2004;287:C1560–8.

    CAS  PubMed  CrossRef  Google Scholar 

  255. Gaengel K, Genove G, Armulik A, Betsholtz C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29:630–8.

    CAS  PubMed  CrossRef  Google Scholar 

  256. Cai W, Liu H, Zhao J, Chen LY, Chen J, Lu Z, Hu X. Pericytes in brain injury and repair after ischemic stroke. Transl Stroke Res. 2017;8:107.

    CAS  PubMed  CrossRef  Google Scholar 

  257. Kloc M, Kubiak JZ, Li XC, Ghobrial RM. Pericytes, microvasular dysfunction, and chronic rejection. Transplantation. 2015;99:658–67.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  258. Arboleda-Velasquez JF, Valdez CN, Marko CK, D’Amore PA. From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy. Curr Diab Rep. 2015;15:573.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  259. Glinskii OV, Huxley VH, Glinskii VV, Rubin LJ, Glinsky VV. Pulsed estrogen therapy prevents post-OVX porcine dura mater microvascular network weakening via a PDGF-BB-dependent mechanism. PLoS One. 2013;8:e82900.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  260. Contard F, Sabri A, Glukhova M, Sartore S, Marotte F, Pomies JP, Schiavi P, Guez D, Samuel JL, Rappaport L. Arterial smooth muscle cell phenotype in stroke-prone spontaneously hypertensive rats. Hypertension. 1993;22:665–76.

    CAS  PubMed  CrossRef  Google Scholar 

  261. Wu J, Zhang Y, Yang P, Enkhjargal B, Manaenko A, Tang J, Pearce WJ, Hartman R, Obenaus A, Chen G, Zhang JH. Recombinant osteopontin stabilizes smooth muscle cell phenotype via integrin receptor/integrin-linked kinase/Rac-1 pathway after subarachnoid hemorrhage in rats. Stroke. 2016;47:1319–27.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  262. Lee MH, Kwon BJ, Seo HJ, Yoo KE, Kim MS, Koo MA, Park JC. Resveratrol inhibits phenotype modulation by platelet derived growth factor-bb in rat aortic smooth muscle cells. Oxidative Med Cell Longev. 2014;2014:572430.

    Google Scholar 

  263. Miyata T, Iizasa H, Sai Y, Fujii J, Terasaki T, Nakashima E. Platelet-derived growth factor-BB (PDGF-BB) induces differentiation of bone marrow endothelial progenitor cell-derived cell line TR-BME2 into mural cells, and changes the phenotype. J Cell Physiol. 2005;204:948–55.

    CAS  PubMed  CrossRef  Google Scholar 

  264. Chimori Y, Hayashi K, Kimura K, Nishida W, Funahashi S, Miyata S, Shimane M, Matsuzawa Y, Sobue K. Phenotype-dependent expression of cadherin 6B in vascular and visceral smooth muscle cells. FEBS Lett. 2000;469:67–71.

    CAS  PubMed  CrossRef  Google Scholar 

  265. Griswold CK. A model of the physiological basis of a multivariate phenotype that is mediated by Ca(2+) signaling and controlled by ryanodine receptor composition. J Theor Biol. 2011;282:14–22.

    CAS  PubMed  CrossRef  Google Scholar 

  266. Munot P, Saunders DE, Milewicz DM, Regalado ES, Ostergaard JR, Braun KP, Kerr T, Lichtenbelt KD, Philip S, Rittey C, Jacques TS, Cox TC, Ganesan V. A novel distinctive cerebrovascular phenotype is associated with heterozygous Arg179 ACTA2 mutations. Brain. 2012;135:2506–14.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  267. Chazalviel L, Haelewyn B, Degoulet M, Blatteau JE, Vallee N, Risso JJ, Besnard S, Abraini JH. Hyperbaric oxygen increases tissue-plasminogen activator-induced thrombolysis in vitro, and reduces ischemic brain damage and edema in rats subjected to thromboembolic brain ischemia. Med Gas Res. 2016;6:64–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  268. Henninger N, Fisher M. Extending the time window for endovascular and pharmacological reperfusion. Transl Stroke Res. 2016;7:284–93.

    CAS  PubMed  CrossRef  Google Scholar 

  269. Ovbiagele B, Saver JL, Starkman S, Kim D, Ali LK, Jahan R, Duckwiler GR, Vinuela F, Pineda S, Liebeskind DS. Statin enhancement of collateralization in acute stroke. Neurology. 2007;68:2129–31.

    CAS  PubMed  CrossRef  Google Scholar 

  270. Lucitti JL, Tarte NJ, Faber JE. Chloride intracellular channel 4 is required for maturation of the cerebral collateral circulation. Am J Physiol Heart Circ Physiol. 2015;309:H1141–50.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  271. Chalothorn D, Zhang H, Smith JE, Edwards JC, Faber JE. Chloride intracellular channel-4 is a determinant of native collateral formation in skeletal muscle and brain. Circ Res. 2009;105:89–98.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  272. Harrigan MR, Ennis SR, Masada T, Keep RF. Intraventricular infusion of vascular endothelial growth factor promotes cerebral angiogenesis with minimal brain edema. Neurosurgery. 2002;50:589–98.

    PubMed  Google Scholar 

  273. Harrigan MR, Ennis SR, Sullivan SE, Keep RF. Effects of intraventricular infusion of vascular endothelial growth factor on cerebral blood flow, edema, and infarct volume. Acta Neurochir. 2003;145:49–53.

    CAS  PubMed  CrossRef  Google Scholar 

  274. Shimazu T, Inoue I, Araki N, Asano Y, Sawada M, Furuya D, Nagoya H, Greenberg JH. A peroxisome proliferator-activated receptor-gamma agonist reduces infarct size in transient but not in permanent ischemia. Stroke. 2005;36:353–9.

    CAS  PubMed  CrossRef  Google Scholar 

  275. Culman J, Nguyen-Ngoc M, Glatz T, Gohlke P, Herdegen T, Zhao Y. Treatment of rats with pioglitazone in the reperfusion phase of focal cerebral ischemia: a preclinical stroke trial. Exp Neurol. 2012;238:243–53.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (P01 NS082184, R01 NS081740, and R01 NS091042 to John H. Zhang), the National Basic Research Program of China (973 Program, 2014CB541600 to Hua Feng), the Major Technology Innovation Project of Southwest Hospital (SWH2016ZDCX1011 to Hua Feng) and the National Natural Science Foundation of China (81220108009 to Hua Feng, 81501002 to Yujie Chen).

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Y. et al. (2019). Neurovascular Network as Future Therapeutic Targets. In: , et al. Cerebral Venous System in Acute and Chronic Brain Injuries. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-96053-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96053-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96052-4

  • Online ISBN: 978-3-319-96053-1

  • eBook Packages: MedicineMedicine (R0)