Selected Theses on Science

  • Eugene S. KryachkoEmail author
Part of the Cultural Psychology of Education book series (CPED, volume 7)


The purpose of Science is to achieve the truth on the way to a new knowledge. The truth, as Immanuel Kant wrote, is the correspondence of knowledge with its object. However, the key question is how to “find a universal and true criterion of the truth of all knowledge”? The contribution of the fundamental sciences is extremely important. And here, in my opinion, there appears a modern paradox which has globally changed the public consciousness. On the one hand, the fundamental science went into the status of the labor forces and, on the other hand, modern production, demanding “the implementation of scientific research and scientific approach, began increasingly resemble to science.” In the process of production—which creates the product of labor including both material goods and services in the case of material production and a new knowledge as in the case of science—the labor forces enter into industrial relations. If any scientific work as an object, an element of the external world that we aim to contemplate the work, as well as a phenomenon, and develop its conceptual representation as well as about the phenomenon that it is modeling. Hence, the closer to the actual simulated phenomenon to the studied one, the closer this work to the truth. I assume my viewpoint is quite clear, even without mentioning Goethe: “It is a shame that the truth is so simple.”


Basic science H-index Impact factor Chemistry Truth 


  1. Aristotle, N. (2014). Metaphysics (W. D. Ross (Ed.), Trans.). Australia: eBooks@Adelaide, The University of Adelaide.Google Scholar
  2. Arrow, K. J. (2014). Information as a commodity and problems of economic theory.
  3. Asmus, V. F. (1973). Immanuel Kant. Moscow: Nauka.Google Scholar
  4. Bacon, F. (1859). Novum organum (first published 1620). The works of Francis Bacon, 1.Google Scholar
  5. Bayes, T., & Price, M. (1763). An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFRS. Philosophical Transactions (1683–1775), 370–418.Google Scholar
  6. Bepнaдcкий, B. И. (1997). Scientific thought as planetary phenomenon. Moscow: Nongovernmental Ecological VI Vernadsky Foundation.Google Scholar
  7. Botting, D. (1974). Alexander von Humboldt. München: Prestel.Google Scholar
  8. Brillouin, L. (1956). Science and information theory. New York: Academic Press.Google Scholar
  9. Connes, A., Lichnerowicz, A., & Schützenberger, M. P. (2001). Triangle of thoughts. Providence, RI: American Mathematical Society.Google Scholar
  10. Derrick, G. E., Haynes, A., Chapman, S., & Hall, W. D. (2011). The association between four citation metrics and peer rankings of research influence of Australian researchers in six fields of public health. PLoS ONE, 6(4), e18521.CrossRefGoogle Scholar
  11. Deutsch, D. (2001). Cтpyктypa peaльнocти. [Structure of the reality]. Ижeвcк: HИЦ «Peгyляpнaя и xaoтичecкaя динaмикa».Google Scholar
  12. Dezhina, I. (2014). Reform of RAS: Attempts and results. Retrieved from:
  13. Dirac, P. A. (1937). The cosmological constants. Nature, 139, 323.CrossRefGoogle Scholar
  14. dos Santos Rubem, A. P., & de Moura, A. L. (2015). Comparative analysis of some individual bibliometric indices when applied to groups of researchers. Scientometrics, 1–17.Google Scholar
  15. Eddington, A. S. (1931, January). Preliminary note on the masses of the electron, the proton, and the universe. In Mathematical proceedings of the Cambridge Philosophical Society (Vol. 27, No. 01, pp. 15–19). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Efron, B. (2013). Bayes’ theorem in the 21st century. Science, 340(6137), 1177–1178.CrossRefGoogle Scholar
  17. Fraser, G. (2013). The incomprehensibility principle. Physics World, 26(3), 84.CrossRefGoogle Scholar
  18. Gorelik, G. (2004). Aндpeй Caxapoв. Hayкa и Cвoбoдa. [Andrei Sakharov. Science and Freedom]. Baгpиyc, 784.Google Scholar
  19. Gorelik, G. (2014). Hayкa, изoбpeтaтeльcтвo и cвoбoдa. [Science, Invention and Freedom]. Знaниe-cилa, 1(1), 82–86.Google Scholar
  20. Görnitz, T. (1988). Connections between abstract quantum theory and space-time structure. International Journal of Theoretical Physics, 27(6), 659–666.CrossRefGoogle Scholar
  21. Haas, A. (May, 2013) Curiosity: Leitmotif for scientific basic research. Plenary Lecture, Humboldt-Kolleg “Chemistry and Life”. Ukraine: Poltava.Google Scholar
  22. Hansen H. (n.d.). Can the Universe be completely digitized? Retrieved from:
  23. Heisenberg, W. (1958). Physics and philosophy. NY: Harper.Google Scholar
  24. Heisenberg, W. (1977). Schritte über Grenzen. München: Reden und Aufsätze.Google Scholar
  25. Helferich, G. (2004). Humboldt’s Cosmos: Alexander von Humboldt and the Latin American journey that changed the way we see the world (p. 2004). New York: Gotham Books.Google Scholar
  26. Hempel, C. G. (1943). A purely syntactical definition of confirmation. The Journal of Symbolic Logic, 8(04), 122–143.CrossRefGoogle Scholar
  27. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572.CrossRefGoogle Scholar
  28. Hooft, G. T. (1999). Quantum gravity as a dissipative deterministic system. Classical and Quantum Gravity, 16(10), 3263.CrossRefGoogle Scholar
  29. Huseynov, H. (August, 31, 2014). Novaya Gazeta.Google Scholar
  30. Jennings, B. K. (2006). On the nature of science. arXiv: preprint physics/0607241.Google Scholar
  31. Kafatos, M., & Nadeau, R. (2000). The conscious universe: Parts and wholes in physical reality. New York: Springer.CrossRefGoogle Scholar
  32. Kant, I. (1770) On the form and principles of the sensible and intelligible world (Doctoral Dissertation).Google Scholar
  33. Kant, I. (1994). Кpитикa чиcтoгo paзyмa. [Kritik der reinen Vernunf]. Moscow: Mыcль.Google Scholar
  34. Kline, M. (1982). Mathematics: The loss of certainty (Vol. 686). New York: Oxford University Press.Google Scholar
  35. Kryachko, E. S. (2011). On molecular bonding logic and matrix representation of constant and balanced boolean functions. Ukrainian Phisical Journal, 56, 694–698.Google Scholar
  36. Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
  37. Kuzmin, V. (2014). Кoмпютep – вaш Bepгiлiй cвiтi aтoмiв. [Computer—Your Virgil in the world of atoms]. Bicн. HAH Укpaїни, 2, 22–31.Google Scholar
  38. Popper, K. (1963). Conjectures and refutations. The growth of scientific knowledge. London: Routledge and Kegan Paul.Google Scholar
  39. Larsen, P. O., & von Ins, M. (2010). The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index. Scientometrics, 84(3), 575–603.CrossRefGoogle Scholar
  40. Lloyd, S. (2006). Programming the universe: A quantum computer scientist takes on the cosmos. New York: Random House LLC.Google Scholar
  41. Loktev, V. (2013). Whether the ‘queen of sciences’can do all? Country of Knowledge, 1–2(2–3).Google Scholar
  42. Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of Washington Academy Sciences.Google Scholar
  43. Lyre, H. (1995). Quantum theory of ur-objects as a theory of information. International Journal of Theoretical Physics, 34(8), 1541–1552.CrossRefGoogle Scholar
  44. Marx, K., & Engels, F. (1969). Кpитикa пoлитичecкoй экoнoмии [чepнoвoй нaбpocoк 1857-1858 гoдoв, втopaя пoлoвинa pyкoпиcи]. [Critique of Political Economy [rough draft of the years 1857–1858, the second half of the manuscript] (2 ed., Book 46, Part 2, pp. 214–215).Google Scholar
  45. Mryglod, O., Kenna, R., Golovach, V., & Bersh, B. (2013). Пpo вимipювaння нayкoвoї eфeктивнocтi. [On the Scientific Measurement of Efficiency]. Vestnik Natl. Acad. Sci. Ukraine 10, 76–85.Google Scholar
  46. National Science Furore. (2013). Grants awarded through peer review should not then be subject to political ‘accountability’. Nature Physics, 9, 315. Retrieved from:
  47. Nature: Editorials. (2013). The maze of impact metrics. Retreived from:
  48. Nielsen, M. A., & Chuang, I. L. (2000). Quantum computation and information.Google Scholar
  49. Palagin, A. (2014). Tpaнcдиcциплинapнocть, инфopмaтикa и paзвитиe coвpeмeннoй цивилизaции. [Transdisciplinarity, Informatics and Modern Civilization development]. Bicн. HAHУ 7, 25–33.Google Scholar
  50. Pika, S. (2012). How Human Are Ravens? Humboldt Kosmos 99, 7.Sci. 16, 317–323 (1926).Google Scholar
  51. Pyykko, P. (2006). Power-law distribution of individual Hirsch indices, the comparison of merits in different fields, and the relation to a Pareto distribution. arXiv: preprint physics/0608282.Google Scholar
  52. Research Assessment Exercise. (2008). Retrieved from:
  53. Russell, B (1903 (1st ed), 1938 (2nd ed)). Principles of mathematics (2nd ed.). W.W. Norton. ISBN:0-393-00249-7.Google Scholar
  54. Schmidhuber, J. (n.d.). Computer universes and an algorithmic theory of everything. Retrieved from:
  55. Sigmund, P., & Wallin, J. (2009). Evaluation by citation: An imperfect system. Physics Today, 62(12), 10–11.CrossRefGoogle Scholar
  56. Smirnov, S. (2013). Инфopмaция из мaтepии или мaтepия из инфopмaции. [Information from matter or matter of information]. Tpoицкий вapиaнт – Hayкa, 135, 8–9.Google Scholar
  57. Thomson Reuters Research Analytics. (n.d.). Retrieved from:
  58. Turchin, V. (2000). Фeнoмeн нayки: Кибepнeтичecкий пoдxoд к эвoлюции. [The Phenomenon of Science: Cybernetic Approach to Evolution] (2 ed.). ETS.Google Scholar
  59. Van Raan, A. F. (2005). Fatal attraction: Conceptual and methodological problems in the ranking of universities by bibliometric methods. Scientometrics, 62(1), 133–143.CrossRefGoogle Scholar
  60. Vernadsky, V. (2004). Биocфepa и Hoocфepa [Biosphere and Noosphere] Aйpиc Пpecc, M.Google Scholar
  61. Vienna Circle. (n.d.). In Stanford encyclopedia of philosophy (Metaphysics Research Lab, Stanford University).Google Scholar
  62. Von Weizsäcker, C. F. (1971). Die Einheit der Natur.Google Scholar
  63. Von Weizsäcker, C. F. (1973). Physics and philosophy. The physicist’s conception of nature (pp. 736–746). Dordrecht: Springer.CrossRefGoogle Scholar
  64. Von Weizsäcker, C. V. (1985). Aufbau der Physik. München: Hanser.Google Scholar
  65. Von Weizsäcker, C. F. (1992). Zeit und Wissen. Hanser.Google Scholar
  66. Weyl, H. (1954). Address on the unity of knowledge delivered at the bicentennial conference of Columbia University. as repr. in (1968), 4, 623–630.Google Scholar
  67. Wolfram, S. (2002). A new kind of science. Wolfram Media.Google Scholar
  68. Zatsman, G. (2012). Индeкcы нayчнoгo цитиpoвaния. [Indexes of Scientific Citation]. Retrieved from:
  69. Zinoviev, A. (1997). Глoбaльный Чeлoвeйник. [Global Cheloveinik]. Retrieved from:
  70. Zizzi, P. (2003). Spacetime at the Planck scale: The quantum computer view. arXiv: preprint gr-qc/0304032.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.N. N. Bogolyubov Institute for Theoretical PhysicsNational Academy of Sciences of UkraineKievUkraine
  2. 2.University of LiegeLiegeBelgium

Personalised recommendations