Skip to main content

Patch-Based Methods for Video Denoising

  • Chapter
  • First Online:
Denoising of Photographic Images and Video

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 1527 Accesses

Abstract

Video denoising is an important and open problem, which is less treated than the single-image case. Most image sequence denoising techniques rely on still image denoising algorithms; however, it is possible to take advantage of the redundant information contained in the sequence to improve the denoising results. Most recent algorithms are patch based. These methods have two clearly differentiated steps: select similar patches to a reference one and estimate a noise-free version from this group. We review selection and estimation strategies. In particular, we show that the performance is improved by introducing motion compensation. We use as example a recent video denoising technique inspired by fusion algorithms that use motion compensation by regularized optical flow methods, which permits robust patch comparison in a spatiotemporal volume. The use of principal component analysis ensures the correct preservation of fine texture and details, provided that the noise is Gaussian and white, with known variance. Video acquired by any video camera or mobile phone undergoes several processings from the sensor to the final output. This processing, including at least demosaicking, white balance, gamma correction, filtering, and compression, makes a white noise model unrealistic. Indeed, real video captured in dark environments has a very poor quality, with severe spatially and temporally correlated noise. We discuss a denoising framework including realistic noise estimation, multiscale processing, variance stabilization, and white noise removal algorithms. We illustrate the performance of such a chain with real dark and compressed movie sequences.

The authors were supported by grant TIN2014-53772R and TIN2017-85572-P.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We used the Matlab implementations of Ji et al. (by Sibin, Yuhong, and Yu, 2013), and VIDOLSAT (from http://www.ifp.illinois.edu/~yoram). The rest of algorithms were implemented following the descriptions in the published papers. Remark that Gao et al. method is an extension to video sequences of the method described in [65].

References

  1. Adams A, Gelfand N, Pulli K (2008) Viewfinder alignment. In: Computer graphics forum, vol 27, pp 597–606. Wiley Online Library

    Google Scholar 

  2. Alvarez L, Lions PL, Morel JM (1992) Image selective smoothing and edge detection by nonlinear diffusion II. SIAM J Numer Anal 29(3):845–866

    Article  MathSciNet  Google Scholar 

  3. Alvarez L, Weickert J, Sánchez J (2000) Reliable estimation of dense optical flow fields with large displacements. Int J Comput Vis 39(1):41–56

    Article  Google Scholar 

  4. Arias P, Morel JM (2017) Video denoising via empirical Bayesian estimation of space-time patches. J Math Imaging Vis 1–24

    Google Scholar 

  5. Ayvaci A, Raptis M, Soatto S (2010) Occlusion detection and motion estimation with convex optimization. In: Advances in neural information processing systems, pp 100–108

    Google Scholar 

  6. Ballester C, Garrido L, Lazcano V, Caselles V (2012) A TV-L1 optical flow method with occlusion detection. In: Lecture notes in computer science, vol 7476. Springer, pp 31–40

    Google Scholar 

  7. Bennett E, McMillan L (2005) Video enhancement using per-pixel virtual exposures. In: ACM SIGGRAPH 2005 papers. ACM, p 852

    Google Scholar 

  8. Boulanger J, Kervrann C, Bouthemy P (2007) Space-time adaptation for patch-based image sequence restoration. IEEE Trans Pattern Anal Mach Intell 29(6):1096–1102

    Article  Google Scholar 

  9. Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: European conference on computer vision. Springer, pp 25–36

    Google Scholar 

  10. Brox T, Malik J (2011) Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans Pattern Anal Mach Intell 33(3):500–513

    Article  Google Scholar 

  11. Buades A, Coll B, Morel J (2005) A non local algorithm for image denoising. IEEE Comput Vis Pattern Recognit 2:60–65

    MATH  Google Scholar 

  12. Buades A, Coll B, Morel J (2008) Nonlocal image and movie denoising. Int J Comput Vis 76(2):123–139

    Article  Google Scholar 

  13. Buades A, Duran J (2017) Flow-based video super-resolution with spatio-temporal patch similarity. In: Proceedings British machine vision conference 2017. BMVA

    Google Scholar 

  14. Buades A, Lisani JL (2017) Denoising of noisy and compressed video sequences. In: VISIGRAPP (4: VISAPP), pp 150–157

    Google Scholar 

  15. Buades A, Lisani JL (2017) Enhancement of noisy and compressed videos by optical flow and non-local denoising. IEEE Trans Image Process (submitted)

    Google Scholar 

  16. Buades A, Lisani JL, Miladinović M (2016) Patch-based video denoising with optical flow estimation. IEEE Trans Image Process 25(6):2573–2586

    Article  MathSciNet  Google Scholar 

  17. Buades A, Lou Y, Morel JM, Tang Z (2009) A note on multi-image denoising. In: International workshop on local and non-local approximation in image processing. IEEE, pp 1–15

    Google Scholar 

  18. Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20:89–97

    Article  MathSciNet  Google Scholar 

  19. Colom M, Buades A, Morel JM (2014) Nonparametric noise estimation method for raw images. JOSA A 31(4):863–871

    Article  Google Scholar 

  20. Colom M, Lebrun M, Buades A, Morel JM (2015) Nonparametric multiscale blind estimation of intensity-frequency dependent noise. IEEE Trans Image Process

    Google Scholar 

  21. Dabov K, Foi A, Egiazarian K (2007) Video denoising by sparse 3D transform-domain collaborative filtering. In: Proceedings of the 15th European signal processing conference, vol 1, p 7

    Google Scholar 

  22. Dabov K, Foi A, Katkovnik V, Egiazarian K et al (2009) BM3D image denoising with shape-adaptive principal component analysis. In: Proceedings of the workshop on signal processing with adaptive sparse structured representations, Saint-Malo, France

    Google Scholar 

  23. Delbracio M, Sapiro G (2015) Hand-held video deblurring via efficient Fourier aggregation. IEEE Trans Comput Imaging 1(4):270–283

    Article  MathSciNet  Google Scholar 

  24. Deledalle CA, Tupin F, Denis L (2010) Poisson NL-means: unsupervised non local means for Poisson noise. In: 17th IEEE international conference on image processing. IEEE, pp 801–804

    Google Scholar 

  25. Donoho D (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627

    Article  MathSciNet  Google Scholar 

  26. Drago F, Myszkowski K, Annen T, Chiba N (2003) Adaptive logarithmic mapping for displaying high contrast scenes. In: Proceedings of EUROGRAPHICS, vol 22

    Google Scholar 

  27. Durand F, Dorsey J (2002) Fast bilateral filtering for the display of high-dynamic-range images. In: ACM transactions on graphics (TOG), vol 21. ACM, pp 257–266

    Google Scholar 

  28. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745

    Article  MathSciNet  Google Scholar 

  29. Farsiu S, Robinson M, Elad M, Milanfar P (2004) Fast and robust multiframe super resolution. IEEE Trans Image Process 13(10):1327–1344

    Article  Google Scholar 

  30. Gao Y, Hu HM, Wu J (2015) Video denoising algorithm via multi-scale joint luma-chroma bilateral filter. In: 2015 visual communications and image processing (VCIP). IEEE, pp 1–4

    Google Scholar 

  31. Haro G, Buades A, Morel JM (2012) Photographing paintings by image fusion. SIAM J Imaging Sci 5(3):1055–1087

    Article  MathSciNet  Google Scholar 

  32. Horn B, Schunck B (1981) Determining optical flow. In: Technical symposium east. International Society for Optics and Photonics, pp 319–331

    Google Scholar 

  33. Ji H, Huang S, Shen Z, Xu Y (2011) Robust video restoration by joint sparse and low rank matrix approximation. SIAM J Imaging Sci 4(4):1122–1142

    Article  MathSciNet  Google Scholar 

  34. Joshi N, Cohen M (2010) Seeing Mt. Rainier: lucky imaging for multi-image denoising, sharpening, and haze removal. In: IEEE international conference on computational photography, pp 1–8

    Google Scholar 

  35. Jovanov L, Luong H, Ružic T, Philips W (2015) Multiview image sequence enhancement. In: SPIE/IS&T electronic imaging. International Society for Optics and Photonics, pp 93,990K–93,990K

    Google Scholar 

  36. Kim M, Park D, Han DK, Ko H (2015) A novel approach for denoising and enhancement of extremely low-light video. IEEE Trans Consum Electron 61(1):72–80

    Article  Google Scholar 

  37. Kokaram AC (2013) Motion picture restoration: digital algorithms for artefact suppression in degraded motion picture film and video. Springer Science & Business Media

    Google Scholar 

  38. Lebrun M, Buades A, Morel JM (2013) A nonlocal Bayesian image denoising algorithm. SIAM J Imaging Sci 6(3):1665–1688

    Article  MathSciNet  Google Scholar 

  39. Lebrun M, Colom M, Buades A, Morel JM (2012) Secrets of image denoising cuisine. Acta Numerica 21:475–576

    Article  MathSciNet  Google Scholar 

  40. Lebrun M, Colom M, Morel JM (2015) The noise clinic: a blind image denoising algorithm. Image Process On Line 5:1–54

    Article  Google Scholar 

  41. Liu C, Freeman W (2010) A high-quality video denoising algorithm based on reliable motion estimation. In: European conference on computer vision. Springer, pp 706–719

    Google Scholar 

  42. Liu C, Szeliski R, Kang S, Zitnick C, Freeman W (2008) Automatic estimation and removal of noise from a single image. IEEE Trans Pattern Anal Mach Intell 30(2):299–314

    Article  Google Scholar 

  43. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  MathSciNet  Google Scholar 

  44. Maggioni M, Boracchi G, Foi A, Egiazarian K (2011) Video denoising using separable 4D nonlocal spatiotemporal transforms. In: IS&T/SPIE electronic imaging. International Society for Optics and Photonics, pp 787,003–787,003

    Google Scholar 

  45. Mairal J, Sapiro G, Elad M (2008) Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Model Simul 7(1):214–241

    Article  MathSciNet  Google Scholar 

  46. Mäkitalo M, Foi A (2013) Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise. IEEE Trans Image Process 22(1):91–103

    Article  MathSciNet  Google Scholar 

  47. Orchard J, Ebrahimi M, Wong A (2008) Efficient non-local-means denoising using the SVD. In: Proceedings of the IEEE international conference on image processing

    Google Scholar 

  48. Ozkan MK, Sezan MI, Tekalp AM (1993) Adaptive motion-compensated filtering of noisy image sequences. IEEE Trans Circuits Syst Video Technol 3(4):277–290

    Article  Google Scholar 

  49. Papenberg N, Bruhn A, Brox T, Didas S, Weickert J (2006) Highly accurate optic flow computation with theoretically justified warping. Int J Comput Vis 67(2):141–158

    Article  Google Scholar 

  50. Ponomarenko NN, Lukin VV, Abramov SK, Egiazarian KO, Astola JT (2003) Blind evaluation of additive noise variance in textured images by nonlinear processing of block DCT coefficients. In: Electronic imaging. International Society for Optics and Photonics, pp 178–189

    Google Scholar 

  51. Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60(1–4):259–268

    Article  MathSciNet  Google Scholar 

  52. Sand P, Teller S (2008) Particle video: long-range motion estimation using point trajectories. Int J Comput Vis 80(1):72–91

    Article  Google Scholar 

  53. Smith S, Brady J (1997) SUSAN: a new approach to low level image processing. Int J Comput Vis 23(1):45–78

    Article  Google Scholar 

  54. Szeliski R (2006) Image alignment and stitching: a tutorial. Found Trends Comput Gr Vis 2(1):1–104

    Article  MathSciNet  Google Scholar 

  55. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth international conference on computer vision, pp 839–846

    Google Scholar 

  56. Wang YQ, Morel JM (2013) Sure guided gaussian mixture image denoising. SIAM J Imaging Sci 6(2):999–1034

    Article  MathSciNet  Google Scholar 

  57. Wedel A, Pock T, Zach C, Bischof H, Cremers D (2009) An improved algorithm for TV-L1 optical flow. In: Statistical and geometrical approaches to visual motion analysis. Springer, pp 23–45

    Google Scholar 

  58. Wen B, Ravishankar S, Bresler Y (2015) Video denoising by online 3d sparsifying transform learning. In: 2015 IEEE international conference on image processing (ICIP). IEEE, pp 118–122

    Google Scholar 

  59. Xu Q, Jiang H, Scopigno R, Sbert M (2010) A new approach for very dark video denoising and enhancement. In: 17th IEEE international conference on image processing. IEEE, pp 1185–1188

    Google Scholar 

  60. Yaroslavsky L, Egiazarian K, Astola J (2001) Transform domain image restoration methods: review, comparison, and interpretation. Proc SPIE 4304:155

    Article  Google Scholar 

  61. Yaroslavsky LP (1985) Digital picture processing. Springer, New York Inc, Secaucus, NJ, USA

    Book  Google Scholar 

  62. Yue H, Sun X, Yang J, Wu F (2015) Image denoising by exploring external and internal correlations. IEEE Trans Image Process 24(6):1967–1982

    Article  MathSciNet  Google Scholar 

  63. Zach C, Pock T, Bischof H (2007) A duality based approach for realtime TV-L1 optical flow. In: Pattern recognition. Springer, pp 214–223

    Google Scholar 

  64. Zhang L, Dong W, Zhang D, Shi G (2010) Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognit 43(4):1531–1549

    Article  Google Scholar 

  65. Zhang M, Gunturk BK (2008) Multiresolution bilateral filtering for image denoising. IEEE Trans Image Process 17(12):2324–2333. https://doi.org/10.1109/TIP.2008.2006658

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Buades .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buades, A., Lisani, J.L. (2018). Patch-Based Methods for Video Denoising. In: Bertalmío, M. (eds) Denoising of Photographic Images and Video. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-96029-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96029-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96028-9

  • Online ISBN: 978-3-319-96029-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics