Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 261 Accesses

Abstract

In this chapter we study the dynamics of another deformation of the \(AdS_3 \times S^3\) background that does not break the integrability of the string Lagrangian. This deformation can be classified among the Yang-Baxter sigma models. These kind of models were proposed as a way to construct integrable deformations of the PCM using classical R-matrices that solve the modified classical Yang-Baxter equation. We will study the dispersion relation of spinning string in the truncation of such deformation to \(AdS_3 \times S^3\). General solutions to this truncated background can be written in term of elliptic functions. We also analyse the reduction of the elliptic solutions for some limiting values of the deformation parameter.

-What makes you think that the theory will still be integrable?

-Unlimited optimism

M. Staudacher, replying to A. A. Migdal at the Itzykson Meeting 2007 [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have chosen to follow the normalization of [15] instead of the one used in [5].

  2. 2.

    The MCYBE written in [34] and the one written in [2] differ by a sign in the right-hand side. We have chosen the sign convention of the later.

  3. 3.

    Note that we can use the constraint \(r_1^2 +r_2^2 +r_3^2 =1\) to bring the first term in (4.2.2) to the form

    $$ \frac{(r_1 r'_2 -r'_1 r_2)^2}{(r_1^2 +r_2^2)[1+\varkappa ^2 (r_1^2 +r_2^2)r_2^2]}= \frac{r_1^{\prime 2} +r_2^{\prime 2} +r_3^{\prime 2}}{1+\varkappa ^2 (r_1^2 +r_2^2)r_2^2}- \frac{r_3^{\prime 2}}{(r_1^2 +r_2^2) [1+\varkappa ^2 (r_1^2 +r_2^2) r_2^2]} \ . $$

    Furthermore the term before the Lagrange multiplier is just a total derivative,

    $$ \frac{2\varkappa \omega _3 r_3 r'_3}{1+\varkappa ^2 (r_1^2+r_2^2)}= -\frac{\omega _3}{\varkappa } \left[ \ln (1+\varkappa ^2 (r_1^2+r_2^2)) \right] ' \ . $$
  4. 4.

    However this is not the only reduction that we can perform to obtain a consistent truncation from the \(S^{5}_{\eta }\) to \(S^{3}_{\eta }\). For instance, from the equation of motion for \(r_{1}\),

    $$\begin{aligned} \frac{r''_1}{r}&=\varkappa ^2 \frac{2(r_1^2 + r_2^2) r'_1 r_2 r'_2 +r_1 r_1^{\prime 2} r_2^2 +2 r'_1 r_2^3 r'_2 -r_1 r_2^2 xr^{\prime 2}_2}{r^2} \nonumber \\&- 4 \varkappa \omega _1 \frac{r_1 r_2 r'_2}{r^2}+\Lambda r_1+\frac{r_1 (\alpha _{1}^{\prime 2} - \omega _1^2)}{r} \left( 1-\varkappa ^2 \frac{r_1^2 r_2^2}{r} \right) \ , \end{aligned}$$

    with \(r=1+\varkappa ^2 r_2^2 (r_1^2+r_2^2)\), we conclude that the choice \(r_1=0\) provides indeed another possible truncation. When we set \(r_{1}=0\) the Lagrangian becomes

    $$ L=\frac{1}{2} \left[ \frac{r_3^{\prime 2}}{r_2^2 (1+\varkappa ^2 r_2^2)} +r_2^ 2 (\alpha _2^{\prime 2} -\omega _2^2) + \frac{r_3^2 (\alpha _3^{\prime 2} -\omega _3^2)}{1+\varkappa ^2 r_2^2} \right] +\frac{\Lambda }{2} (r_2^2+r_3^2-1) \ , $$

    which can be easily seen to be equivalent to the one for the \(r_{3}=0\) truncation.

  5. 5.

    The Uhlenbeck constants for the \((AdS_5 \times S^5)_\eta \) Neumann–Rosochatius system were constructed using the Lax representation in [36]. Some immediate algebra shows that those more general constants reduce to the one we present in here along the \(r_{3}=0\) truncation.

  6. 6.

    We should note that this solution is well defined not only for real values of the parameter \(\varkappa \), but also for purely imaginary values of this parameter (although an analytical continuation of the \(r_i\) coordinates may be needed for that). If we define \(\varkappa =i\hat{\varkappa }\) we have

    $$ r_1^2 (\sigma ) =\frac{\omega _1^2 -\zeta _4}{\omega _1^2 -\omega _2^2} + \frac{\zeta _{34}}{\omega _1^2 -\omega _2^2} \frac{ \zeta _{24} \text { sc}^2\left[ \pm \frac{\hat{\varkappa } \omega _2 \sqrt{\zeta _{14} \zeta _{23}} \sigma }{\omega _1^2 -\omega _2^2} , -\frac{\zeta _{12} \zeta _{34}}{\zeta _{14} \zeta _{23}} \right] }{ \zeta _{23} - \zeta _{24} \text { sc}^2 \left[ \pm \frac{\hat{\varkappa } \omega _2 \sqrt{\zeta _{14} \zeta _{23}} \sigma }{\omega _1^2 -\omega _2^2} , -\frac{\zeta _{12} \zeta _{34}}{\zeta _{14} \zeta _{23}} \right] } \ . $$
  7. 7.

    It is immediate to see that in the limit \(\varkappa \rightarrow i\) the solution reduces to \(r_1=0\), \(r_2=1\), together with either zero total angular momentum or zero winding \(m_2\) because of the Virasoro constraint (4.2.9).

  8. 8.

    There is an additional possible expansion, depending on the choice of signs of the winding numbers.

  9. 9.

    From an algebraic point of view, the \(\varkappa =i\) limit behaves in the same way as the limit of pure NS-NS flux in the analysis of the deformation by flux of the Neumann–Rosochatius system presented in the previous chapter.

  10. 10.

    A similar result was obtained for the pulsating string ansatz in [23].

References

  1. C. Klimcik, Yang-Baxter sigma models and dS/AdS T duality. JHEP 12, 051 (2002)

    Article  ADS  Google Scholar 

  2. C. Klimcik, On integrability of the Yang-Baxter \(\sigma \)-model. J. Math. Phys. 50, 043508 (2009)

    Google Scholar 

  3. R. Squellari, Yang-Baxter \(\sigma \) model: quantum aspects. Nucl. Phys. B 881, 502–513 (2014)

    Google Scholar 

  4. F. Delduc, M. Magro, B. Vicedo, On classical q-deformations of integrable \(\sigma \)-models. JHEP 11, 192 (2013)

    Google Scholar 

  5. F. Delduc, M. Magro, B. Vicedo, An integrable deformation of the \({AdS}_5\times {S}^5\) superstring action. Phys. Rev. Lett. 112, 051601 (2014)

    Google Scholar 

  6. F. Delduc, M. Magro, B. Vicedo, Derivation of the action and symmetries of the q-deformed \({AdS}_5 \times {S}^5\) superstring. JHEP 10, 132 (2014)

    Google Scholar 

  7. I. Kawaguchi, T. Matsumoto, K. Yoshida, Jordanian deformations of the \({AdS}_5 \times {S}^5\) superstring. JHEP 06, 153 (2014)

    Google Scholar 

  8. T. Matsumoto, K. Yoshida, Lunin-Maldacena backgrounds from the classical Yang-Baxter equation towards the gravity/CYBE correspondence. JHEP 06, 135 (2014)

    Google Scholar 

  9. T. Matsumoto, K. Yoshida, Integrability of classical strings dual for noncommutative gauge theories. JHEP 06, 163 (2014)

    Google Scholar 

  10. S.J. van Tongeren, On classical Yang-Baxter based deformations of the \({AdS}_5 \times {S}^5\) superstring. JHEP 2015 (2015)

    Google Scholar 

  11. S.J. van Tongeren, Yang-Baxter deformations, AdS/CFT, and twist-noncommutative gauge theory. Nucl. Phys. B 904, 148–175 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. S.J. van Tongeren, Almost abelian twists and AdS/CFT. Phys. Lett. B 765, 344–351 (2017)

    Article  ADS  Google Scholar 

  13. T. Araujo, I. Bakhmatov, E. Colgãin, J.-i. Sakamoto, M.M. Sheikh-Jabbari, K. Yoshida, Yang-baxter \(\sigma \)-models, conformal twists, and noncommutative Yang-Mills theory. Phys. Rev. D 95, 105006 (2017)

    Google Scholar 

  14. T. Araujo, I. Bakhmatov, E. Colgãin, J.-i. Sakamoto, M.M. Sheikh-Jabbari, K. Yoshida, Conformal twists, yang-baxter \(\sigma \)-models & holographic noncommutativity (2017). ArXiv e-prints, arXiv:1705.02063

  15. G. Arutyunov, R. Borsato, S. Frolov, S-matrix for strings on \(\eta \)-deformed \({AdS}_5\times {S}^5\). JHEP 2014 (2014)

    Google Scholar 

  16. G. Arutyunov, D. Medina-Rincon, Deformed Neumann model from spinning strings on \(({AdS}_5 \times {S}^5)_\eta \). JHEP 2014 (2014)

    Google Scholar 

  17. G. Arutyunov, M. de Leeuw, S.J. van Tongeren, On the exact spectrum and mirror duality of the \(({AdS}_5 \times {S}^5)_\eta \) superstring. Theor. Math. Phys. 182, 23–51 (2015)

    Google Scholar 

  18. G. Arutyunov, S.J. van Tongeren, \({AdS}_5 {\times } {S}^5\) Mirror Model as a String Sigma Model. Phys. Rev. Lett. 113 (2014)

    Google Scholar 

  19. A. Banerjee, K.L. Panigrahi, On the rotating and oscillating strings in \(({AdS}_3\times {S}^3)_{\varkappa }\). JHEP 09, 048 (2014)

    Google Scholar 

  20. T. Kameyama, K. Yoshida, A new coordinate system for q-deformed \({AdS}_5 \times {S}^5\) and classical string solutions. J. Phys. A 48, 075401 (2015)

    Google Scholar 

  21. K.L. Panigrahi, P.M. Pradhan, M. Samal, Pulsating strings on \(({AdS}_3 \times {S}^3)_\varkappa \). JHEP 03, 010 (2015)

    Google Scholar 

  22. A. Banerjee, S. Bhattacharya, K.L. Panigrahi, Spiky strings in \(\varkappa \)-deformed \({AdS}\). 06, 057 (2015). ArXiv e-prints, arXiv:1503.07447

  23. A. Banerjee, K.L. Panigrahi, On circular strings in \((AdS_3 \times S^3)_{\varkappa }\). JHEP 09, 061 (2016)

    Google Scholar 

  24. D. Roychowdhury, Multispin magnons on deformed \({AdS}_{3}\times S\). Phys. Rev. D 95, 086009 (2017)

    Google Scholar 

  25. D. Roychowdhury, Stringy correlations on deformed \({AdS}_{3}\times {S}^{3}\). JHEP 03, 043 (2017)

    Google Scholar 

  26. A. Banerjee, A. Bhattacharyya, D. Roychowdhury, Fast spinning strings on \(\eta \) deformed \({AdS}_5 \times {S}^{5} \) (2017). ArXiv e-prints, arXiv:1711.07963v1

  27. R. Hernãndez, J.M. Nieto, Spinning strings in the \(\eta \)-deformed Neumann–Rosochatius system. Phys. Rev. D 96, 086010 (2017)

    Google Scholar 

  28. S. Kachru, E. Silverstein, 4D conformal field theories and strings on orbifolds. Phys. Rev. Lett. 80, 4855–4858 (1998)

    Google Scholar 

  29. O. Lunin, J. Maldacena, Deforming field theories with \({U}(1)\times {U}(1)\) global symmetry and their gravity duals. JHEP 05, 033 (2005)

    Google Scholar 

  30. K. Sfetsos, Integrable interpolations: from exact CFTs to non-abelian T-duals. Nucl. Phys. B 880, 225–246 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  31. N. Beisert, P. Koroteev, Quantum deformations of the one-dimensional Hubbard model. J. Phys. A 41, 255204 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. N. Beisert, W. Galleas, T. Matsumoto, A quantum affine algebra for the deformed Hubbard chain. J. Phys. A 45, 365206 (2012)

    Article  MathSciNet  Google Scholar 

  33. T.J. Hollowood, J.L. Miramontes, D.M. Schmidtt, An integrable deformation of the \({AdS}_5 \times {S}^5\) superstring. J. Phys. A 47, 495402 (2014)

    Google Scholar 

  34. M. Bordemann, Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups. Commun. Math. Phys. 135, 201–216 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  35. T. Matsumoto, K. Yoshida, Integrable deformations of the \({AdS}_5 \times {S}^5\) superstring and the classical Yang-Baxter equation - Towards the gravity/CYBE correspondence. J. Phys. Conf. Ser. 563, 012020 (2014)

    Google Scholar 

  36. G. Arutyunov, M. Heinze, D. Medina-Rincon, Integrability of the \(\eta \)-deformed Neumann-Rosochatius model. J. Phys. A 50, 035401 (2016)

    Google Scholar 

  37. B. Hoare, R. Roiban, A.A. Tseytlin, On deformations of \({AdS}_n \times {S}^n\) supercosets. JHEP 06, 002 (2014)

    Google Scholar 

  38. B. Hoare, A.A. Tseytlin, On integrable deformations of superstring sigma models related to \({AdS}_n \times {S}^n\) supercosets. Nucl. Phys. B 897, 448–478 (2015)

    Google Scholar 

  39. A. Torrielli, Yangians, S-matrices and AdS/CFT. J. Phys. A 44, 263001 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Miguel Nieto .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nieto, J.M. (2018). \(\eta \)-Deformed Neumann–Rosochatius System. In: Spinning Strings and Correlation Functions in the AdS/CFT Correspondence. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-96020-3_4

Download citation

Publish with us

Policies and ethics