Skip to main content

Investigating Synergistic Effects on W Performance with Magnum-PSI

  • Chapter
  • First Online:
Helium Nano-bubble Formation in Tungsten

Part of the book series: Springer Theses ((Springer Theses))

  • 288 Accesses

Abstract

Understanding synergies is essential in order to better predict the performance of W based materials in future fusion experiments. In this chapter, a systematic study on the linear plasma device Magnum-PSI into the synergistic effects of H/He plasma composition, sample temperature, and radiation damage on H retention, He retention, and microstructural changes in W is described. Incident helium ion energy was found to have the most significant effect on heluium retention and the formation of sub-surface nanobubbles, while hydrogen retention is more strongly influenced by temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.P. Roszell, J.W. Davis, A.A. Haasz, Temperature dependence of deuterium retention mechanisms in tungsten. J. Nucl. Mater. 429, 48–54 (2012)

    Article  ADS  Google Scholar 

  2. R.A. Causey, D.F. Cowgill, R. Doerner, R. Kolasinski, B. Mills, D. Morse, J. Smugeresky, W.R. Wampler, R. Williams, D. Huber, Deuterium retention in tungsten at elevated temperatures. J. Nucl. Mater. 415, S672–S675 (2011)

    Article  ADS  Google Scholar 

  3. L. Buzi, G. De Temmerman, B. Unterberg, M. Reinhart, A. Litnovsky, V. Philipps, G. van Oost, S. Möller, Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention. J. Nucl. Mater. 455, 316–319 (2014). https://doi.org/10.1016/j.jnucmat.2014.06.059

    Article  ADS  Google Scholar 

  4. M.H.J. ’t Hoen, M. Mayer, A.W. Kleyn, P.A. van Emmichoven, Strongly reduced penetration of atomic deuterium in radiation-damaged tungsten. Phys. Rev. Lett. 111, 225001 (2013)

    Google Scholar 

  5. W.M. Shu, High-dome blisters formed by deuterium-induced local superplasticity. Appl. Phys. Lett. 92, 211904 (2008)

    Article  ADS  Google Scholar 

  6. G.M. Wright, A.W. Kleyn, E. Alves, L.C. Alves, N.P. Barradas, G.J. van Rooij, A.J. van Lange, A.E. Shumack, J. Westerhout, R.S. Al, W.A.J. Vijvers, B. de Groot, M.J. van de Pol, H.J. van der Meiden, J. Rapp, N.J. Lopes, Cardozo, Hydrogenic retention in tunsten exposed to ITER divertor relevant plasma flux densities. J. Nucl. Mater. 390–391, 610–613 (2009)

    Article  ADS  Google Scholar 

  7. S.C.C. Middleburgh, R.E.E. Voskoboinikov, M.C.C. Guenette, D.P.P. Riley, Hydrogen induced vacancy formation in tungsten. J. Nucl. Mater. 448, 270–275 (2014). https://doi.org/10.1016/j.jnucmat.2014.02.014

    Article  ADS  Google Scholar 

  8. Y. Ueda, T. Funabiki, T. Shimada, K. Fukumoto, H. Kurishita, M. Nishikawa, Hydrogen blister formation and cracking behaviour for various tungsten materials. J. Nucl. Mater. 337–339, 1010–1014 (2005)

    Article  ADS  Google Scholar 

  9. G.M. Wright, E. Alves, L.C. Alves, N.P. Barradas, P.A. Carvalho, R. Mateus, J. Rapp, Hydrogenic retention of high-Z refractory metals exposed to ITER divertor-relevant plasma conditions. Nucl. Fusion 50, 55004 (2010)

    Article  ADS  Google Scholar 

  10. G.M. Wright, M. Mayer, K. Ertl, G. de Saint-Aubin, J. Rapp, Hydrogenic retention in irradiated tungsten exposed to high-flux plasma. Nucl. Fusion 50, 75006 (2010)

    Article  Google Scholar 

  11. M. Yamagiwa, Y. Nakamura, N. Matsunami, N. Ohno, S. Kajita, M. Takagi, M. Tokitani, S. Masuzaki, A. Sagara, K. Nishimura, In situ measurement of hydrogen isotope retention using a high heat flux plasma generator with ion beam analysis. Phys. Scr. T145, 14032 (2011)

    Article  ADS  Google Scholar 

  12. H.Y. Xu, G. De Temmerman, G.-N. Luo, Y.Z. Jia, Y. Yuan, B.Q. Fu, A. Godfrey, W. Liu, Deuterium-induced nanostructure formation on tungsten exposed to high-flux plasma. J. Nucl. Mater. 463, 308–311 (2015). https://doi.org/10.1016/j.jnucmat.2014.11.039

    Article  ADS  Google Scholar 

  13. D. Nishijima, M.Y. Ye, N. Ohno, S. Takamura, Formation mechanisms of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II. J. Nucl. Mater. 329–333, 1029–1033 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.129

    Article  ADS  Google Scholar 

  14. G.M. Wright, D. Brunner, M.J. Baldwin, R.P. Doerner, B. Labombard, B. Lipschultz, J.L. Terry, D.G. Whyte, Tungsten nano-tendril growth in the Alcator C-Mod divertor. Nucl. Fusion 52, 42003 (2012). http://stacks.iop.org/0029-5515/52/i=4/a=042003

  15. F. Sefta, K.D. Hammond, N. Juslin, B.D. Wirth, Tungsten surface evolution by helium bubble nucleation, growth and rupture. Nucl. Fusion 53, 73015 (2013). https://doi.org/10.1088/0029-5515/53/7/073015

    Article  Google Scholar 

  16. S. Kajita, N. Yoshida, R. Yoshihara, N. Ohno, M. Yamagiwa, TEM observation of the growth process of helium nanobubbles on tungsten: nanostructure formation mechanism. J. Nucl. Mater. 418, 152–158 (2011). https://doi.org/10.1016/j.jnucmat.2011.06.026

    Article  ADS  Google Scholar 

  17. M. Miyamoto, S. Mikami, H. Nagashima, N. Iijima, D. Nishijima, R.P. Doerner, N. Yoshida, H. Watanabe, Y. Ueda, A. Sagara, Systematic investigation of the formation behavior of helium bubbles in tungsten. J. Nucl. Mater. 463, 333–336 (2015). https://doi.org/10.1016/j.jnucmat.2014.10.098

    Article  ADS  Google Scholar 

  18. S. Kajita, W. Sakaguchi, N. Ohno, N. Yoshida, T. Saeki, Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions. Nucl. Fusion 49, 95005 (2009). https://doi.org/10.1088/0029-5515/49/9/095005

    Article  Google Scholar 

  19. S. Sharafat, A. Takahashi, Q. Hu, N.M. Ghoniem, A description of bubble growth and gas release of helium implanted tungsten. J. Nucl. Mater. 386–388, 900–903 (2009)

    Article  ADS  Google Scholar 

  20. S.J. Zenobia, G.L. Kulcinski, Fortungsten and retention of surface pores in helium-implanted nano-grain tungsten for fusion reactor first-wall materials and divertor plates. Phys. Scr. T138, 14049 (2009)

    Article  ADS  Google Scholar 

  21. P.E. Lhuillier, T. Belhabib, P. Desgardin, B. Courtois, T. Sauvage, M.F. Barthe, A.L. Thomann, P. Brault, Y. Tessier, Trapping and release of helium in tungsten. J. Nucl. Mater. 416, 13–17 (2011)

    Article  ADS  Google Scholar 

  22. G. De Temmerman, K. Bystrov, R.P. Doerner, L. Marot, G.M. Wright, K.B. Woller, D.G. Whyte, Helium effects on tungsten under fusion-relevant plasma loading conditions. J. Nucl. Mater. (2013)

    Google Scholar 

  23. V.S. Subrahmanyam, P.M.G. Nambissan, P. Sen, Helium bubbles in tungsten studied by position annihilation. Solid State Commun. 89, 523–527 (1994)

    Article  ADS  Google Scholar 

  24. H. Greuner, H. Maier, M. Balden, B. Boeswirth, C. Linsmeier, Investigation of W components exposed to high thermal and high H/He fluxes. J. Nucl. Mater. 417, 495–498 (2011)

    Article  ADS  Google Scholar 

  25. S. Takamura, T. Miyamoto, Y. Tomida, T. Minagawa, N. Ohno, Investigation on the effect of temperature excursion on the helium defects of tungsten surface by using compact plasma device. J. Nucl. Mater. 415, S100–S103 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.021

    Article  ADS  Google Scholar 

  26. F. Sefta, N. Juslin, B.D. Wirth, Helium bubble bursting in tungsten. J. Appl. Phys. 114, 243518 (2013). https://doi.org/10.1063/1.4860315

    Article  ADS  Google Scholar 

  27. M.J. Baldwin, R.P. Doerner, W.R. Wampler, D. Nishijima, T. Lynch, M. Miyamoto, Effect of He on D retention in W exposed to low-energy, high-fluence (D, He, Ar) mixture plasmas. Nucl. Fusion 51, 103021 (2011). http://stacks.iop.org/0029-5515/51/i=10/a=103021

  28. M.J.J. Baldwin, R.P.P. Doerner, D. Nishijima, K. Tokunaga, Y. Ueda, The effects of high fluence mixed-species (deuterium, helium, beryllium) plasma interactions with tungsten. J. Nucl. Mater. 390–391, 886–890 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.247

    Article  ADS  Google Scholar 

  29. T. Shimada, H. Kikuchi, Y. Ueda, A. Sagara, M. Nishikawa, Blister formation in tungsten by hydrogen and carbon mixed ion beam irradiation. J. Nucl. Mater. 313–316, 204–208 (2003). https://doi.org/10.1016/S0022-3115(02)01447-2

    Article  ADS  Google Scholar 

  30. G.M. Wright, R.S. Al, E. Alves, L.C. Alves, N.P. Barradas, A.W. Kleyn, N.J. Lopes Cardozo, H.J. van der Meiden, V. Philipps, G.J. van Rooij, A.E. Shumack, W.A.J. Vijvers, J. Westerhout, E. Zoethout, J. Rapp, Carbon film growth and hydrogenic retention of tungsten exposed to carbon-seeded high density deuterium plasmas. J. Nucl. Mater. 396, 176–180 (2010). https://doi.org/10.1016/j.jnucmat.2009.11.002

    Article  ADS  Google Scholar 

  31. K. Tokunaga, M.J. Baldwin, R.P. Doerner, D. Nishijima, H. Kurishita, T. Fujiwara, K. Araki, Y. Miyamoto, N. Ohno, Y. Ueda, Nanoscale surface morphology of tungsten materials induced by Be-seeded D-He plasma exposure. J. Nucl. Mater. 417, 528–532 (2011). https://doi.org/10.1016/j.jnucmat.2011.01.078

    Article  ADS  Google Scholar 

  32. H.T. Lee, G. De Temmerman, L. Gao, T. Schwarz-Selinger, G. Meisl, T. Höschen, Y. Ueda, Deuterium retention in tungsten exposed to mixed D+N plasma at divertor relevant fluxes in Magnum-PSI. J. Nucl. Mater. 463, 974–978 (2015). https://doi.org/10.1016/j.jnucmat.2014.11.043

    Article  ADS  Google Scholar 

  33. M. Yamagiwa, S. Kajita, N. Ohno, M. Takagi, N. Yoshida, R. Yoshihara, W. Sakaguchi, H. Kurishita, Helium bubble formation on tungsten in dependence of fabrication method. J. Nucl. Mater. 417, 499–503 (2011). https://doi.org/10.1016/j.jnucmat.2011.02.007

    Article  ADS  Google Scholar 

  34. L. Buzi, G. De Temmerman, B. Unterberg, M. Reinhart, T. Dittmar, D. Matveev, C. Linsmeier, U. Breuer, A. Kreter, G. van Oost, Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention. J. Nucl. Mater. (2014) Article in Press. http://dx.doi.org/10.1016/j.jnucmat.2014.12.006

  35. Y. Zayachuk, M.H.J.t Hoen, I. Uytdenhouwen, G. van Oost, Thermal desorption spectroscopy of W–Ta alloys, exposed to high-flux deuterium plasma. Phys. Scr. T145, 14041 (2011). https://doi.org/10.1088/0031-8949/2011/t145/014041

  36. T. Tanno, A. Hasegawa, J.C. He, M. Fujiwara, M. Satou, S. Nogami, K. Abe, T. Shishido, Effects of transmutation elements on the microstructural evolution and electrical resistivity of neutron-irradiated tungsten. J. Nucl. Mater. 386–388, 218–221 (2009). https://doi.org/10.1016/j.jnucmat.2008.12.091

    Article  ADS  Google Scholar 

  37. H. Watanabe, N. Futagami, S. Naitou, N. Yoshida, Microstructure and thermal desorption of deuterium in heavy-ion-irradiated pure tungsten. J. Nucl. Mater. 455, 51–55 (2014)

    Article  ADS  Google Scholar 

  38. D.E.J. Armstrong, X. Yi, E.A. Marquis, S.G. Roberts, Hardening of self ion implanted tungsten and tungsten 5-wt% rhenium. J. Nucl. Mater. 432, 428–436 (2013)

    Article  ADS  Google Scholar 

  39. M. Shimada, Y. Hatano, Y. Oya, T. Oda, M. Hara, G. Cao, M. Kobayashi, M. Sokolov, H. Watanabe, B. Tyburska-Puschel, Y. Ueda, P. Calderoni, K. Okuno, Overview of the US-Japan collaborative investigation on hydrogen isotope retention in neutron-irraditated and ion-damaged tungsten. Fusion Eng. Des. 87, 1166–1170 (2012)

    Article  Google Scholar 

  40. B. Tyburska, V.K. Alimov, O.V. Ogorodnikova, K. Schmid, K. Ertl, Deuterium retention in self-damaged tungsten. J. Nucl. Mater. 395, 150–155 (2009). https://doi.org/10.1016/j.jnucmat.2009.10.046

    Article  ADS  Google Scholar 

  41. A. Hasegawa, T. Tanno, S. Nogami, M. Satou, Property change mechanism in tungsten under neutron irradiation in various reactors. J. Nucl. Mater. 417, 491–494 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.114

    Article  ADS  Google Scholar 

  42. J. Marian, T.L. Hoang, Modeling fast neutron irradiation damage accumulation in tungsten. J. Nucl. Mater. 429, 293–297 (2012). https://doi.org/10.1016/j.jnucmat.2012.06.019

    Article  ADS  Google Scholar 

  43. A. Debelle, M.F. Barthe, T. Sauvage, First temperature stage evolution of irradiation-induced defects in tungsten studied by positron annihilation spectroscopy. J. Nucl. Mater. 376, 216–221 (2008). https://doi.org/10.1016/j.jnucmat.2008.03.002

    Article  ADS  Google Scholar 

  44. V.S. Voitsenya, M. Balden, A.F. Bardamid, A.I. Belyaeva, V.N. Bondarenko, O.O. Skoryk, A.F. Shtan, S.I. Solodovchenko, V.A. Sterligov, B. Tyburska-Püschel, Effect of sputtering on self-damaged ITER-grade tungsten. J. Nucl. Mater. 453, 60–65 (2014). https://doi.org/10.1016/j.jnucmat.2014.06.037

  45. M. Wirtz, J. Linke, G. Pintsuk, G. De Temmerman, G.M. Wright, Thermal shock behaviour of tungsten after high flux H-plasma loading. J. Nucl. Mater. 443, 497–501 (2013). https://doi.org/10.1016/j.jnucmat.2013.08.002

    Article  ADS  Google Scholar 

  46. G. De Temmerman, J.J. Zielinski, S. van Diepen, L. Marot, M. Price, ELM simulation experiments on Pilot-PSI using simultaneous high flux plasma and transient heat/particle source. Nucl. Fusion 51, 73008 (2011). https://doi.org/10.1088/0029-5515/51/7/073008

    Article  Google Scholar 

  47. G. De Temmerman, M.J. Baldwin, D. Anthoine, K. Heinola, A. Jan, I. Jepu, J. Likonen, C.P. Lungu, C. Porosnicu, R.A. Pitts, Efficiency of thermal outgassing for tritium retention measurement and removal in ITER. Nucl. Mater. Energy. (2016). https://doi.org/10.1016/j.nme.2016.10.016

    Article  Google Scholar 

  48. Y. Ueda, M. Fukumoto, J. Yoshida, Y. Ohtsuka, R. Akiyoshi, H. Iwakiri, N. Yoshida, Simultaneous irradiation effects of hydrogen and helium ions on tungsten. J. Nucl. Mater. 386–388, 725–728 (2009)

    Article  ADS  Google Scholar 

  49. M. Miyamoto, D. Nishijima, Y. Ueda, R.P. Doerner, H. Kurishita, M.J. Baldwin, S. Morito, K. Ono, J. Hanna, Observations of suppressed retention and blistering for tungsten exposed to deuterium–helium mixture plasmas. Nucl. Fusion 49, 65035 (2009). https://doi.org/10.1088/0029-5515/49/6/065035

    Article  Google Scholar 

  50. H.T.T. Lee, A.A.A. Haasz, J.W.W. Davis, R.G.G. Macaulay-Newcombe, D.G.G. Whyte, G.M.M. Wright, Hydrogen and helium trapping in tungsten under simultaneous irradiations. J. Nucl. Mater. 363–365, 898–903 (2007). https://doi.org/10.1016/j.jnucmat.2007.01.111

    Article  ADS  Google Scholar 

  51. D. Nishijima, T. Sugimoto, H. Iwakiri, M.Y. Ye, N. Ohno, N. Yoshida, S. Takamura, Characteristic changes of deuterium retention on tungsten surfaces due to low-energy helium plasma pre-exposure. J. Nucl. Mater. 337–339, 927–931 (2005). https://doi.org/10.1016/j.jnucmat.2004.10.011

    Article  ADS  Google Scholar 

  52. W.R. Wampler, R.P. Doerner, The influence of displacement damage on deuterium retention in tungsten exposed to plasma. Nucl. Fusion 49, 115023 (2009). https://doi.org/10.1088/0029-5515/49/11/115023

    Article  ADS  Google Scholar 

  53. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—The stopping and range of ions in matter. Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact. Mater. Atoms. 268, 1818–1823 (2010). doi:http://dx.doi.org/10.1016/j.nimb.2010.02.091

  54. J. Rapp, W.R.R. Koppers, H.J.N.J.N. van Eck, G.J.J. van Rooij, W.J.J. Goedheer, B. de Groot, R. Al, M.F. Granswinckel, M.A.A. van den Berg, O. Kruyt, P. Smeets, H.J.J. van der Meiden, W. Vijvers, J. Scholten, M. van de Pol, S. Brons, W. Melissen, T. van der Grift, R. Koch, B. Schweer, U. Samm, V. Philipps, R.A.H.A.H. Engeln, D.C.C. Schram, N.J.J. Lopes Cardozo, A.W.W. Kleyn, M.F. Graswinckel, M.A.A. van den Berg, O. Kruyt, P. Smeets, H.J.J. van der Meiden, W. Vijvers, J. Scholten, M. van de Pol, S. Brons, W. Melissen, T. van der Grift, R. Koch, B. Schweer, U. Samm, V. Philipps, R.A.H.A.H. Engeln, D.C.C. Schram, N.J.J. Lopes Cardozo, A.W.W. Kleyn, Construction of the plasma-wall experiment Magnum-PSI. Fusion Eng. Des. 85, 1455–1459 (2010). https://doi.org/10.1016/j.fusengdes.2010.04.009

    Article  Google Scholar 

  55. G.J. van Rooij, H.J. van der Meiden, M.H.J. ’t Hoen, W.R. Koppers, A.E. Shumack, W.A.J. Vijvers, J. Westerhout, G.M. Wright, J. Rapp, Thomson scattering at Pilot-PSI and Magnum-PSI. Plasma Phys. Control. Fusion 51, 124037 (2009). http://stacks.iop.org/0741-3335/51/i=12/a=124037

  56. M. Thompson, A. Deslandes, T.W. Morgan, R.G. Elliman, G. De Temmerman, P. Kluth, D. Riley, C.S. Corr, Observation of a helium ion energy threshold for retention in tungsten exposed to hydrogen/helium mixture plasma. Nucl. Fusion 56, 104002 (2016). https://doi.org/10.1088/0029-5515/56/10/104002

    Article  ADS  Google Scholar 

  57. K.O.E. Henriksson, K. Nordlund, A. Krasheninnikov, J. Keinonen, J.K. K. O. E. Henriksson, K. Nordlund, A. Krasheninnikov, The depths of hydrogen and helium bubbles in tungsten: a comparison. Fusion Sci. Technol. 50, 43–57 (2006). http://jn8sf5hk5v.search.serialssolutions.com/?ctx_ver=Z39.88-2004&ctx_enc=info%253Aofi%252Fenc%253AUTF-8&rfr_id=info:sid/summon.serialssolutions.com&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The+depths+of+hydrogen+and+helium+bubbles

  58. E. Markina, M. Mayer, H.T. Lee, Measurement of He and H depth profiles in tungsten using ERDA with medium heavy ion beams. Nucl. Instruments Methods Phys. Res. B. 269, 3094–3097 (2011)

    Article  ADS  Google Scholar 

  59. M. Mayer, SIMNRA, a simulation program for the analysis of NRA, RBS, and ERDA, in ed. by J.L. Duggan, I.L. Morgan, 15th International Conference Application of Accelerators in Research and Industry, American Institute of Physics Conference Proceedings (1999), p. 541. http://home.rzg.mpg.de/~mam/References.html

  60. R.O. Dendy (ed.) Plasma Physics: An Introductory Course (Cambridge University Press, 1993)

    Google Scholar 

  61. B. Efron, C. Stein, The jackknife estimate of variance, 586–596 (1981). https://doi.org/10.1214/aos/1176345462

  62. V. Borovikov, A.F. Voter, X.-Z. Tang, Reflection and implantation of low energy helium with tungsten surfaces. J. Nucl. Mater. 447, 254–270 (2014). https://doi.org/10.1016/j.jnucmat.2014.01.021

    Article  ADS  Google Scholar 

  63. X.-C. Li, X. Shu, P. Tao, Y. Yu, G.-J. Niu, Y. Xu, F. Gao, G.-N. Luo, Molecular dynamics simulation of helium cluster diffusion and bubble formation in bulk tungsten. J. Nucl. Mater. 455, 544–548 (2014). https://doi.org/10.1016/j.jnucmat.2014.08.028

    Article  ADS  Google Scholar 

  64. H.T. Lee, N. Tanaka, Y. Ohtsuka, Y. Ueda, Ion-driven permeation of deuterium through tungsten under simultaneous helium and deuterium irradiation. J. Nucl. Mater. 415, S696–S700 (2011)

    Article  ADS  Google Scholar 

  65. H.T. Lee, A.A. Haasz, J.W. Davis, R.G. Macaulay-Newcombe, Hydrogen and helium trapping in tungsten under single and sequential irradiations. J. Nucl. Mater. 360, 196–207 (2007). https://doi.org/10.1016/j.jnucmat.2006.09.013

    Article  ADS  Google Scholar 

  66. M. Miyamoto, D. Nishijima, M.J.J. Baldwin, R.P.P. Doerner, Y. Ueda, K. Yasunaga, N. Yoshida, K. Ono, Microscopic damage of tungsten exposed to deuterium-helium mixture plasma in PISCES and its impacts on retention property. J. Nucl. Mater. 415, S657–S660 (2011). https://doi.org/10.1016/j.jnucmat.2011.01.008

    Article  ADS  Google Scholar 

  67. T. Hino, K. Koyama, Y. Yamauchi, Y. Hirohata, Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten. Fusion Eng. Des. 39–40, 227–233 (1998). https://doi.org/10.1016/S0920-3796(98)00157-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thompson, M. (2018). Investigating Synergistic Effects on W Performance with Magnum-PSI. In: Helium Nano-bubble Formation in Tungsten. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-96011-1_6

Download citation

Publish with us

Policies and ethics