Skip to main content

Introduction

  • Chapter
  • First Online:
Helium Nano-bubble Formation in Tungsten

Part of the book series: Springer Theses ((Springer Theses))

  • 272 Accesses

Abstract

This chapter provides an overview of the ITER fusion project and some of the major materials science challenges that must be overcome in order to ensure its success. Tungsten has been selected as the material of choice for ITER's exhaust region, known as the divertor, as it has the highest melting point of any metal and excellent thermal conductivity. The challenge for fusion science is to understand how these properties are likely to change over time, and whether degradation of these tungsten surfaces could affect the performance of the fusion plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ideally, the steady-state operating temperature of the divertor will be maintained below ~1273 K so that it remains below the recrystalisation temperature of tungsten, however, certain factors such as the shape of and spacing between divertor tiles could have a significant effect on material temperatures, especially near the corners and edges. The specific configuration of divertor tiles has been a topic of significant debate amongst the ITER divertor design team.

  2. 2.

    “DEMO” is the tentative name used to describe any hypothetical fusion program aimed at developing a DEMOnstration electricity generating power station, and is widely understood within the fusion community to represent the next step after ITER. DEMO is not likely to be a single international project like ITER, but rather many separate projects run by individual countries.

  3. 3.

    These numbers should be seen as indicative of behaviour, rather than definitive. Real material systems are considerably more complex than the idealised model systems used for computer simulations of material behaviour.

  4. 4.

    That being said, surface diffusion may also play an important role in fuzz formation. I would encourage readers to familiarise themselves with the work of Martynenko and Nagel’ [90] which presents an alternative view on how surface diffusion could be the driver behind fuzz formation.

References

  1. ITER, Vacuum Vessel, Online (2015)

    Google Scholar 

  2. A.W. Edwards, D.J. Campbell, W.W. Engelhardt, H.-U. Fahrbach, R.D. Gill, R.S. Granetz, S. Tsuji, B.J.D. Tubbing, A. Weller, J. Wesson, D. Zasche, Rapid collapse of a plasma sawtooth oscillation in the JET tokamak. Phys. Rev. Lett. 57, 210–213 (1986). https://doi.org/10.1103/PhysRevLett.57.210

    Article  ADS  Google Scholar 

  3. R. Albanese, G. Ambrosino, E. Coccorese, A. Pironti, J.B. Lister, D.J. Ward, Modelling and engineering aspects of the plasma shape control in ITER, in 19th Symposium Fusion Technology SOFT (1996)

    Google Scholar 

  4. G.P. Maddison, E.S. Hotston, D. Reiter, P. Boerner, T. Baelmans, Towards fully authentic modelling of ITER divertor plasmas, in 18th European Conference Control Fusion Plasma Physics (1991)

    Google Scholar 

  5. R.D. Pillsbury jr, J.H. Schultz, Modelling of plasma start-up in ITER. Magn. IEEE Trans. 28, 1462–1465 (1992). https://doi.org/10.1109/20.123971

  6. B.J. Green, I.I. Team, P. Teams, ITER: burning plasma physics experiment. Plasma Phys. Control. Fusion 45, 687 (2003). http://stacks.iop.org/0741-3335/45/i=5/a=312

  7. Y. Shimomura, Y. Murakami, A.R. Polevoi, P. Barabaschi, V. Mukhovatov, M. Shimada, ITER: opportunity of burning plasma studies. Plasma Phys. Control. Fusion 43, A385 (2001). http://stacks.iop.org/0741-3335/43/i=12A/a=329

  8. G.F. Matthews, M. Beurskens, S. Brezinsek, M. Groth, E. Joffrin, A. Loving, M. Kear, M.-L. Mayoral, R. Neu, P. Prior, V. Riccardo, F. Rimini, M. Rubel, G. Sips, E. Villedieu, P. de Vries, M.L. Watkins, E.-J. contributors, JET ITER-like wall—overview and experimental programme. Phys. Scr. 2011, 14001 (2011). http://stacks.iop.org/1402-4896/2011/i=T145/a=014001

  9. G. Federici, P. Andrew, P. Barabaschi, J. Brooks, R. Doerner, A. Geier, A. Herrmann, G. Janeschitz, K. Krieger, A. Kukushkin, A. Loarte, R. Neu, G. Saibene, M. Shimada, G. Strohmayer, M. Sugihara, Key ITER plasma edge and plasma–material interaction issues. J. Nucl. Mater. 313–316, 11–22 (2003). https://doi.org/10.1016/S0022-3115(02)01327-2

    Article  ADS  Google Scholar 

  10. R.A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A.S. Kukushkin, A. Loarte, M. Merola, A. Sashala Naik, R. Mitteau, M. Sugihara, B. Bazylev, P.C. Stangeby, A full tungsten divertor for ITER: physics issues and design status. J. Nucl. Mater. 438, S48–S56 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.008

    Article  ADS  Google Scholar 

  11. A. Loarte, B. Lipschultz, A.. Kukushkin, G.. Matthews, P.. Stangeby, N. Asakura, G.. Counsell, G. Federici, A. Kallenbach, K. Krieger, A. Mahdavi, V. Philipps, D. Reiter, J. Roth, J. Strachan, D. Whyte, R. Doerner, T. Eich, W. Fundamenski, A. Herrmann, M. Fenstermacher, P. Ghendrih, M. Groth, A. Kirschner, S. Konoshima, B. LaBombard, P. Lang, A.. Leonard, P. Monier-Garbet, R. Neu, H. Pacher, B. Pegourie, R. Pitts, S. Takamura, J. Terry, E. Tsitrone, the I.S.L. and D. Group, Chapter 4: Power and particle control. Nucl. Fusion 47, S203–S263 (2007). https://doi.org/10.1088/0029-5515/47/6/s04

  12. D. Demange, C.G. Alecu, N. Bekris, O. Borisevich, B. Bornschein, S. Fischer, N. Gramlich, Z. Köllö, T.L. Le, R. Michling, F. Priester, M. Röllig, M. Schlösser, S. Stämmler, M. Sturm, R. Wagner, S. Welte, Overview of R&D at TLK for process and analytical issues on tritium management in breeder blankets of ITER and {DEMO}. Fusion Eng. Des. 87, 1206–1213 (2012). https://doi.org/10.1016/j.fusengdes.2012.02.105

    Article  Google Scholar 

  13. M.J. Rubel, G. De Temmerman, J.P. Coad, J. Vince, J.R. Drake, F. Le Guern, A. Murari, R.A. Pitts, C. Walker, Mirror test for international thermonuclear experimental reactor at the JET tokamak: an overview of the program. Rev. Sci. Instrum. 77, 63501 (2006). https://doi.org/10.1063/1.2202915

    Article  Google Scholar 

  14. F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen, W. Engelhardt, G. Fussmann, O. Gehre, J. Gernhardt, G.V. Gierke, G. Haas, M. Huang, F. Karger, M. Keilhacker, O. Klüber, M. Kornherr, K. Lackner, G. Lisitano, G.G. Lister, H.M. Mayer, D. Meisel, E.R. Müller, H. Murmann, H. Niedermeyer, W. Poschenrieder, H. Rapp, H. Röhr, F. Schneider, G. Siller, E. Speth, A. Stäbler, K.H. Steuer, G. Venus, O. Vollmer, Z. Yü, Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak. Phys. Rev. Lett. 49, 1408–1412 (1982). https://doi.org/10.1103/physrevlett.49.1408

    Article  ADS  Google Scholar 

  15. M. Merola, D. Loesser, A. Martin, P. Chappuis, R. Mitteau, V. Komarov, R.A. Pitts, S. Gicquel, V. Barabash, L. Giancarli, J. Palmer, M. Nakahira, A. Loarte, D. Campbell, R. Eaton, A. Kukushkin, M. Sugihara, F. Zhang, C.S. Kim, R. Raffray, L. Ferrand, D. Yao, S. Sadakov, A. Furmanek, V. Rozov, T. Hirai, F. Escourbiac, T. Jokinen, B. Calcagno, S. Mori, ITER plasma-facing components. Fusion Eng. Des. 85, 2312–2322 (2010). https://doi.org/10.1016/j.fusengdes.2010.09.013

    Article  Google Scholar 

  16. O. Gruber, A. Kallenbach, M. Kaufmann, K. Lackner, V. Mertens, J. Neuhauser, F. Ryter, H. Zohm, M. Bessenrodt-Weberpals, K. Büchl, S. Fiedler, A. Field, C. Fuchs, C. Garcia-Rosales, G. Haas, A. Herrmann, W. Herrmann, S. Hirsch, W. Köppendörfer, P. Lang, G. Lieder, K. Mast, C. Pitcher, M. Schittenhelm, J. Stober, W. Suttrop, M. Troppmann, M. Weinlich, M. Albrecht, M. Alexander, K. Asmussen, M. Ballico, K. Behler, K. Behringer, H. Bosch, M. Brambilla, A. Carlson, D. Coster, L. Cupido, H. DeBlank, S. De Pena Hempel, S. Deschka, C. Dorn, R. Drube, R. Dux, A. Eberhagen, W. Engelhardt, H. Fahrbach, H. Feist, D. Fieg, G. Fu beta mann, O. Gehre, J. Gernhardt, P. Ignacz, B. Jüttner, W. Junker, T. Kass, K. Kiemer, H. Kollotzek, M. Kornherr, K. Krieger, B. Kurzan, R. Lang, M. Laux, Observation of continuous divertor detachment in H-mode discharges in ASDEX upgrade. Phys. Rev. Lett. 74, 4217–4220 (1995). https://doi.org/10.1103/physrevlett.74.4217

    Article  ADS  Google Scholar 

  17. T. Hirai, F. Escourbiac, S. Carpentier-Chouchana, A. Fedosov, L. Ferrand, T. Jokinen, V. Komarov, A. Kukushkin, M. Merola, R. Mitteau, R.A. Pitts, W. Shu, M. Sugihara, B. Riccardi, S. Suzuki, R. Villari, ITER tungsten divertor design development and qualification program. Fusion Eng. Des. 88, 1798–1801 (2013). https://doi.org/10.1016/j.fusengdes.2013.05.010

    Article  Google Scholar 

  18. M.R. Gilbert, J. Marian, J.-C. Sublet, Energy spectra of primary knock-on atoms under neutron irradiation. J. Nucl. Mater. 467, 121–134 (2015). https://doi.org/10.1016/j.jnucmat.2015.09.023

    Article  ADS  Google Scholar 

  19. R. Villari, V. Barabash, F. Escourbiac, L. Ferrand, T. Hirai, V. Komarov, M. Loughlin, M. Merola, F. Moro, L. Petrizzi, S. Podda, E. Polunovsky, G. Brolatti, Nuclear analysis of the ITER full-tungsten divertor. Fusion Eng. Des. 88, 2006–2010 (2013). https://doi.org/10.1016/j.fusengdes.2013.02.156

    Article  Google Scholar 

  20. D. Stork, P. Agostini, J.L. Boutard, D. Buckthorpe, E. Diegele, S.L. Dudarev, C. English, G. Federici, M.R. Gilbert, S. Gonzalez, A. Ibarra, C. Linsmeier, A. Li Puma, G. Marbach, P.F. Morris, L.W. Packer, B. Raj, M. Rieth, M.Q. Tran, D.J. Ward, S.J. Zinkle, Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: the EU assessment. J. Nucl. Mater. 455, 277–291 (2014). https://doi.org/10.1016/j.jnucmat.2014.06.014

    Article  ADS  Google Scholar 

  21. M.R. Gilbert, Comparative assessment of material performance in DEMO fusion reactors. Fusion Sci. Technol. 66 (2014). https://doi.org/10.13182/fst13-751

  22. J.W. Coenen, S. Antusch, M. Aumann, W. Biel, J. Du, J. Engels, S. Heuer, A. Houben, T. Hoeschen, B. Jasper, F. Koch, J. Linke, A. Litnovsky, Y. Mao, R. Neu, G. Pintsuk, J. Riesch, M. Rasinski, J. Reiser, M. Rieth, A. Terra, B. Unterberg, T. Weber, T. Wegener, J.-H. You, C. Linsmeier, Materials for DEMO and reactor applications—boundary conditions and new concepts. Phys. Scr. T167, 14002 (2016). https://doi.org/10.1088/0031-8949/2016/T167/014002

    Article  ADS  Google Scholar 

  23. U. Fischer, P. Pereslavtsev, A. Möslang, M. Rieth, Transmutation and activation analysis for divertor materials in a HCLL-type fusion power reactor. J. Nucl. Mater. 386–388, 789–792 (2009). https://doi.org/10.1016/j.jnucmat.2008.12.221

    Article  ADS  Google Scholar 

  24. T. Tanno, A. Hasegawa, J.C. He, M. Fujiwara, M. Satou, S. Nogami, K. Abe, T. Shishido, Effects of transmutation elements on the microstructural evolution and electrical resistivity of neutron-irradiated tungsten. J. Nucl. Mater. 386–388, 218–221 (2009). https://doi.org/10.1016/j.jnucmat.2008.12.091

    Article  ADS  Google Scholar 

  25. H. Sakane, Y. Kasugai, M. Shibata, T. Iida, A. Takahashi, T. Fukahori, K. Kawade, Measurement of activation cross-sections of (n, np + d) reactions producing short-lived nuclei in the energy range between 13.4 and 14.9 MeV using an intense neutron source OKTAVIAN. Ann. Nucl. Energy 29, 53–66 (2002). https://doi.org/10.1016/S0306-4549(01)00025-1

    Article  Google Scholar 

  26. S. Esqué, C. van Hille, R. Ranz, C. Damiani, J. Palmer, D. Hamilton, Progress in the design, R&D and procurement preparation of the ITER divertor remote handling system. Fusion Eng. Des. 89, 2373–2377 (2014). https://doi.org/10.1016/j.fusengdes.2014.01.060

    Article  Google Scholar 

  27. F. Escourbiac, M. Richou, R. Guigon, S. Constans, A. Durocher, M. Merola, J. Schlosser, B. Riccardi, A. Grosman, Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis. Phys. Scr. T138, 14002 (2009). https://doi.org/10.1088/0031-8949/2009/T138/014002

    Article  ADS  Google Scholar 

  28. K. Seidel, R. Eichin, R. Forrest, H. Freiesleben, S. Goncharov, V. Kovalchuk, D. Markovskij, D. Maximov, S. Unholzer, Activation experiment with tungsten in fusion peak neutron field. J. Nucl. Mater. 329–333, 1629–1632 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.145

    Article  ADS  Google Scholar 

  29. W. Eckstein, J. László, Sputtering of tungsten and molybdenum. J. Nucl. Mater. 183, 19–24 (1991). https://doi.org/10.1016/0022-3115(91)90466-K

    Article  ADS  Google Scholar 

  30. V. Krsjak, S.H. Wei, S. Antusch, Y. Dai, Mechanical properties of tungsten in the transition temperature range. J. Nucl. Mater. 450, 81–87 (2014). https://doi.org/10.1016/j.jnucmat.2013.11.019

    Article  Google Scholar 

  31. Q. Yan, X. Zhang, T. Wang, C. Yang, C. Ge, Effect of hot working process on the mechanical properties of tungsten materials. J. Nucl. Mater. 442, S233–S236 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.307

    Article  ADS  Google Scholar 

  32. A. Jaber, L. El-Guebaly, A. Robinson, D. Henderson, T. Renk, Rhenium and molybdenum coatings for dendritic tungsten armors of plasma facing components: concept, problems, and solutions. Fusion Eng. Des. 87, 641–645 (2012). https://doi.org/10.1016/j.fusengdes.2012.01.041

    Article  Google Scholar 

  33. R. Liu, Y. Zhou, T. Hao, T. Zhang, X.P. Wang, C.S. Liu, Q.F. Fang, Microwave synthesis and properties of fine-grained oxides dispersion strengthened tungsten. J. Nucl. Mater. 424, 171–175 (2012). https://doi.org/10.1016/j.jnucmat.2012.03.008

    Article  ADS  Google Scholar 

  34. R. Liu, Z.M. Xie, T. Hao, Y. Zhou, X.P. Wang, Q.F. Fang, C.S. Liu, Fabricating high performance tungsten alloys through zirconium micro-alloying and nano-sized yttria dispersion strengthening. J. Nucl. Mater. 451, 35–39 (2014). https://doi.org/10.1016/j.jnucmat.2014.03.029

    Article  ADS  Google Scholar 

  35. Z. Zhou, J. Tan, D. Qu, G. Pintsuk, M. Rödig, J. Linke, Basic characterization of oxide dispersion strengthened fine-grained tungsten based materials fabricated by mechanical alloying and spark plasma sintering. J. Nucl. Mater. 431, 202–205 (2012). https://doi.org/10.1016/j.jnucmat.2011.11.039

    Article  ADS  Google Scholar 

  36. J. Du, T. Höschen, M. Rasinski, S. Wurster, W. Grosinger, J.-H. You, Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings. Compos. Sci. Technol. 70, 1482–1489 (2010). https://doi.org/10.1016/j.compscitech.2010.04.028

    Article  Google Scholar 

  37. J. Riesch, J.-Y. Buffiere, T. Höschen, M. di Michiel, M. Scheel, C. Linsmeier, J.-H. You, In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system. Acta Mater. 61, 7060–7071 (2013). https://doi.org/10.1016/j.actamat.2013.07.035

    Article  Google Scholar 

  38. J.W. Coenen, Y. Mao, J. Almanstötter, A. Calvo, S. Sistla, H. Gietl, B. Jasper, J. Riesch, M. Rieth, G. Pintsuk, F. Klein, A. Litnovsky, A.V. Mueller, T. Wegener, J.-H. You, C. Broeckmann, C. Garcia-Rosales, R. Neu, C. Linsmeier, Advanced materials for a damage resilient divertor concept for DEMO: powder-metallurgical tungsten-fibre reinforced tungsten. Fusion Eng. Des. (2016). https://doi.org/10.1016/j.fusengdes.2016.12.006

    Article  Google Scholar 

  39. J. Reiser, M. Rieth, A. Möslang, B. Dafferner, A. Hoffmann, X. Yi, D.E.J. Armstrong, Tungsten foil laminate for structural divertor applications—Tensile test properties of tungsten foil. J. Nucl. Mater. 434, 357–366 (2013). https://doi.org/10.1016/j.jnucmat.2012.12.003

    Article  ADS  Google Scholar 

  40. R. Neu, J. Riesch, J.W. Coenen, J. Brinkmann, A. Calvo, S. Elgeti, C. García-Rosales, H. Greuner, T. Hoeschen, G. Holzner, F. Klein, F. Koch, C. Linsmeier, A. Litnovsky, T. Wegener, S. Wurster, J.-H. You, Advanced tungsten materials for plasma-facing components of DEMO and fusion power plants. Fusion Eng. Des. 109, 1046–1052 (2016). https://doi.org/10.1016/j.fusengdes.2016.01.027

    Article  Google Scholar 

  41. M. Wirtz, J. Linke, G. Pintsuk, G. De Temmerman, G.M. Wright, Thermal shock behaviour of tungsten after high flux H-plasma loading. J. Nucl. Mater. 443, 497–501 (2013). https://doi.org/10.1016/j.jnucmat.2013.08.002

    Article  ADS  Google Scholar 

  42. T. Hirai, G. Pintsuk, J. Linke, M. Batilliot, Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures. J. Nucl. Mater. 390–391, 751–754 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.313

    Article  ADS  Google Scholar 

  43. G. Pintsuk, H. Kurishita, J. Linke, H. Arakawa, S. Matsuo, T. Sakamoto, S. Kobayashi, K. Nakai, Thermal shock response of fine- and ultra-fine-grained tungsten-based materials. Phys. Scr. 2011, 14060 (2011). http://stacks.iop.org/1402-4896/2011/i=T145/a=014060

  44. T. Pütterich, R. Neu, R. Dux, A.D. Whiteford, M.G. O'Mullane, H.P. Summers and the ASDEX Upgrade Team, Calculation and experimental test of the cooling factor of tungsten. Nucl. Fusion 50, 25012 (2010). https://doi.org/10.1088/0029-5515/50/2/025012

  45. T Pütterich, R Neu1, R Dux, A D Whiteford, M G O'Mullane and the ASDEX Upgrade Team, Modelling of measured tungsten spectra from ASDEX Upgrade and predictions for ITER. Plasma Phys. Control. Fusion 50, 85016 (2008). https://doi.org/10.1088/0741-3335/50/8/085016

  46. V. Philipps, Tungsten as material for plasma-facing components in fusion devices. J. Nucl. Mater. 415, S2–S9 (2011). https://doi.org/10.1016/j.jnucmat.2011.01.110

    Article  ADS  Google Scholar 

  47. D L Rudakov, C P C Wong, R P Doerner, G M Wright, T Abrams, M J Baldwin, J A Boedo, A R Briesemeister, C P Chrobak, H Y Guo, E M Hollmann, A G McLean, M E Fenstermacher, C J Lasnier, A W Leonard, R A Moyer, D C Pace, D M Thomas and J G Watkins, Exposures of tungsten nanostructures to divertor plasmas in DIII-D. Phys. Scr. T167, 14055 (2016). https://doi.org/10.1088/0031-8949/t167/1/014055

  48. G F Matthews, B Bazylev, A Baron-Wiechec, J Coenen, K Heinola, V Kiptily, H Maier, C Reux, V Riccardo, F Rimini, G Sergienko, V Thompson, A Widdowson and JET Contributors, Melt damage to the JET ITER-like Wall and divertor. Phys. Scr. T167, 14070 (2016). https://doi.org/10.1088/0031-8949/t167/1/014070

  49. K.O.E. Henriksson, K. Nordlund, A. Krasheninnikov, J. Keinonen, Difference in formation of hydrogen and helium clusters in tungsten. Appl. Phys. Lett. 87 (2005). http://dx.doi.org/10.1063/1.2103390

  50. H.T.T. Lee, A.A.A. Haasz, J.W.W. Davis, R.G.G. Macaulay-Newcombe, D.G.G. Whyte, G.M.M. Wright, Hydrogen and helium trapping in tungsten under simultaneous irradiations. J. Nucl. Mater. 363–365, 898–903 (2007). https://doi.org/10.1016/j.jnucmat.2007.01.111

    Article  ADS  Google Scholar 

  51. Y. Ueda, H.Y.Y. Peng, H.T.T. Lee, N. Ohno, S. Kajita, N. Yoshida, R. Doerner, G. De Temmerman, V. Alimov, G. Wright, G. De Temmerman, V. Alimov, G. Wright, Helim effects on tungsten surface morphology and deuterium retention. J. Nucl. Mater. 442, S267–S272 (2013). https://doi.org/10.1016/j.jnucmat.2012.10.023

    Article  Google Scholar 

  52. Y. Sakoi, M. Miyamoto, K. Ono, M. Sakamoto, Helium irradiation effects on deuterium retention in tungsten. J. Nucl. Mater. 442, S715–S718 (2013). https://doi.org/10.1016/j.jnucmat.2012.10.003

    Article  ADS  Google Scholar 

  53. E. Bernard, R. Sakamoto, N. Yoshida, H. Yamada, Temperature impact on W surface exposed to He plasma in LHD and its consequences for the material properties. J. Nucl. Mater. 463, 316–319 (2015). https://doi.org/10.1016/j.jnucmat.2014.11.041

    Article  ADS  Google Scholar 

  54. S. Kajita, N. Yoshida, R. Yoshihara, N. Ohno, T. Yokochi, M. Tokitani, S. Takamura, TEM analysis of high temperature annealed W nanostructure surfaces. J. Nucl. Mater. 421, 22–27 (2012). https://doi.org/10.1016/j.jnucmat.2011.11.044

    Article  ADS  Google Scholar 

  55. M. Miyamoto, D. Nishijima, M.J.J. Baldwin, R.P.P. Doerner, Y. Ueda, K. Yasunaga, N. Yoshida, K. Ono, Microscopic damage of tungsten exposed to deuterium-helium mixture plasma in PISCES and its impacts on retention property. J. Nucl. Mater. 415, S657–S660 (2011). https://doi.org/10.1016/j.jnucmat.2011.01.008

    Article  ADS  Google Scholar 

  56. D. Nishijima, M.Y. Ye, N. Ohno, S. Takamura, Formation mechanisms of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II. J. Nucl. Mater. 329–333, 1029–1033 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.129

    Article  ADS  Google Scholar 

  57. D. Nishijima, M.Y. Ye, N. Ohno, S. Takamura, Incident ion energy dependence of bubble formation on tungsten surface with low energy and high flux helium plasma irradiation. J. Nucl. Mater. 313–316, 97–101 (2003). https://doi.org/10.1016/S0022-3115(02)01368-5

    Article  ADS  Google Scholar 

  58. M.J. Baldwin, R.P. Doerner, Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions. Nucl. Fusion 48, 35001 (2008). http://stacks.iop.org/0029-5515/48/i=3/a=035001

  59. M.J. Baldwin, R.P. Doerner, Formation of helium induced nanostructure “fuzz” on various tungsten grades. J. Nucl. Mater. 404, 165–173 (2010). https://doi.org/10.1016/j.jnucmat.2010.06.034

    Article  ADS  Google Scholar 

  60. M.J. Baldwin, R.P. Doerner, W.R. Wampler, D. Nishijima, T. Lynch, M. Miyamoto, Effect of He on D retention in W exposed to low-energy, high-fluence (D, He, Ar) mixture plasmas. Nucl. Fusion 51, 103021 (2011). http://stacks.iop.org/0029-5515/51/i=10/a=103021

  61. G.M. Wright, D. Brunner, M.J. Baldwin, R.P. Doerner, B. Labombard, B. Lipschultz, J.L. Terry, D.G. Whyte, Tungsten nano-tendril growth in the Alcator C-Mod divertor. Nucl. Fusion 52, 42003 (2012). http://stacks.iop.org/0029-5515/52/i=4/a=042003

  62. M.J. Baldwin, T.C. Lynch, R.P. Doerner, J.H. Yu, Nanostructure formation on tungsten exposed to low-pressure rf helium plasmas: a study of ion energy threshold and early stage growth. J. Nucl. Mater. 415, S104–S107 (2011). https://doi.org/10.1016/j.jnucmat.2010.10.050

    Article  ADS  Google Scholar 

  63. M. Yamagiwa, S. Kajita, N. Ohno, M. Takagi, N. Yoshida, R. Yoshihara, W. Sakaguchi, H. Kurishita, Helium bubble formation on tungsten in dependence of fabrication method. J. Nucl. Mater. 417, 499–503 (2011). https://doi.org/10.1016/j.jnucmat.2011.02.007

    Article  ADS  Google Scholar 

  64. R.D. Smirnov, S.I. Krasheninnikov, J. Guterl, Atomistic modeling of growth and coalescence of helium nano-bubbles in tungsten. J. Nucl. Mater. 463, 359–362 (2015). https://doi.org/10.1016/j.jnucmat.2014.10.033

    Article  ADS  Google Scholar 

  65. S. Sharafat, A. Takahashi, K. Nagasawa, N. Ghoniem, A description of stress driven bubble growth of helium implanted tungsten. J. Nucl. Mater. 389, 203–212 (2009). https://doi.org/10.1016/j.jnucmat.2009.02.027

    Article  ADS  Google Scholar 

  66. F. Sefta, K.D. Hammond, N. Juslin, B.D. Wirth, Tungsten surface evolution by helium bubble nucleation, growth and rupture. Nucl. Fusion 53, 73015 (2013). https://doi.org/10.1088/0029-5515/53/7/073015

    Article  Google Scholar 

  67. S. Kajita, N. Yoshida, R. Yoshihara, N. Ohno, M. Yamagiwa, TEM observation of the growth process of helium nanobubbles on tungsten: Nanostructure formation mechanism. J. Nucl. Mater. 418, 152–158 (2011). https://doi.org/10.1016/j.jnucmat.2011.06.026

    Article  ADS  Google Scholar 

  68. M. Miyamoto, S. Mikami, H. Nagashima, N. Iijima, D. Nishijima, R.P. Doerner, N. Yoshida, H. Watanabe, Y. Ueda, A. Sagara, Systematic investigation of the formation behavior of helium bubbles in tungsten. J. Nucl. Mater. 463, 333–336 (2015). https://doi.org/10.1016/j.jnucmat.2014.10.098

    Article  ADS  Google Scholar 

  69. M.J.J. Baldwin, R.P.P. Doerner, D. Nishijima, K. Tokunaga, Y. Ueda, The effects of high fluence mixed-species (deuterium, helium, beryllium) plasma interactions with tungsten. J. Nucl. Mater. 390–391, 886–890 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.247

    Article  ADS  Google Scholar 

  70. S. Kajita, W. Sakaguchi, N. Ohno, N. Yoshida, T. Saeki, Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions. Nucl. Fusion 49, 95005 (2009). https://doi.org/10.1088/0029-5515/49/9/095005

    Article  Google Scholar 

  71. K.O.E. Henriksson, K. Nordlund, J. Keinonen, Molecular dynamics simulations of helium cluster formation in tungsten. Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact. Mater. Atoms. 244, 377–391 (2006). https://doi.org/10.1016/j.nimb.2005.10.020

  72. D. Nishijima, M.J. Baldwin, R.P. Doerner, J.H. Yu, Sputtering properties of tungsten “fuzzy” surfaces. J. Nucl. Mater. 415, S96–S99 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.017

    Article  ADS  Google Scholar 

  73. S. Kajita, S. Takamura, N. Ohno, D. Nishijima, H. Iwakiri, N. Yoshida, Sub-ms laser pulse irradiation on tungsten target damaged by exposure to helium plasma. Nucl. Fusion 47, 1358–1366 (2007). https://doi.org/10.1088/0029-5515/47/9/038

    Article  ADS  Google Scholar 

  74. S. Kajita, S. Takamura, N. Ohno, Prompt ignition of a unipolar arc on helium irradiated tungsten. Nucl. Fusion 49, 32002 (2009). https://doi.org/10.1088/0029-5515/49/3/032002

    Article  Google Scholar 

  75. S. Kajita, N. Ohno, S. Takamura, Tungsten blow-off in response to the ignition of arcing: revival of arcing issue in future fusion devices. J. Nucl. Mater. 415, S42–S45 (2011). https://doi.org/10.1016/j.jnucmat.2010.08.030

    Article  ADS  Google Scholar 

  76. T. Hino, K. Koyama, Y. Yamauchi, Y. Hirohata, Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten. Fusion Eng. Des. 39–40, 227–233 (1998). https://doi.org/10.1016/S0920-3796(98)00157-4

    Article  Google Scholar 

  77. N. Juslin, B.D. Wirth, Molecular dynamics simulation of the effect of sub-surface helium bubbles on hydrogen retention in tungsten. J. Nucl. Mater. 438, S1221–S1223 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.270

    Article  ADS  Google Scholar 

  78. D. Nishijima, T. Sugimoto, H. Iwakiri, M.Y. Ye, N. Ohno, N. Yoshida, S. Takamura, Characteristic changes of deuterium retention on tungsten surfaces due to low-energy helium plasma pre-exposure. J. Nucl. Mater. 337–339, 927–931 (2005). https://doi.org/10.1016/j.jnucmat.2004.10.011

    Article  ADS  Google Scholar 

  79. K. Tokunaga, T. Fujiwara, K. Ezato, S. Suzuki, M. Akiba, H. Kurishita, S. Nagata, B. Tsuchiya, A. Tonegawa, N. Yoshida, Effects of high heat flux hydrogen and helium mixture beam irradiation on surface modification and hydrogen retention in tungsten materials. J. Nucl. Mater. 390–391, 916–920 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.235

    Article  ADS  Google Scholar 

  80. M. Miyamoto, D. Nishijima, Y. Ueda, R.P. Doerner, H. Kurishita, M.J. Baldwin, S. Morito, K. Ono, J. Hanna, Observations of suppressed retention and blistering for tungsten exposed to deuterium–helium mixture plasmas. Nucl. Fusion 49, 65035 (2009). https://doi.org/10.1088/0029-5515/49/6/065035

    Article  Google Scholar 

  81. V.K. Alimov, W.M. Shu, J. Roth, K. Sugiyama, S. Lindig, M. Balden, K. Isobe, T. Yamanishi, Surface morphology and deuterium retention in tungsten exposed to low-energy, high flux pure and helium-seeded deuterium plasmas. Phys. Scr. T138, 14048 (2009). https://doi.org/10.1088/0031-8949/2009/T138/014048

    Article  ADS  Google Scholar 

  82. Y. Nobuta, Y. Hatano, M. Matsuyama, S. Abe, Y. Yamauchi, T. Hino, Helium irradiation effects on tritium retention and long-term tritium release properties in polycrystalline tungsten. J. Nucl. Mater. 463, 993–996 (2015). https://doi.org/10.1016/j.jnucmat.2014.12.047

    Article  ADS  Google Scholar 

  83. H.T. Lee, N. Tanaka, Y. Ohtsuka, Y. Ueda, Ion-driven permeation of deuterium through tungsten under simultaneous helium and deuterium irradiation. J. Nucl. Mater. 415, S696–S700 (2011)

    Article  ADS  Google Scholar 

  84. J. Knaster, A. Moeslang, T. Muroga, Materials research for fusion. Nat. Phys. 12, 424–434 (2016). https://doi.org/10.1038/nphys3735

    Article  Google Scholar 

  85. P. Grigorev, D. Terentyev, G. Bonny, E.E. Zhurkin, G. van Oost, J.-M. Noterdaeme, Mobility of hydrogen-helium clusters in tungsten studied by molecular dynamics. J. Nucl. Mater. 474, 143–149 (2016). https://doi.org/10.1016/j.jnucmat.2016.03.022

    Article  ADS  Google Scholar 

  86. R. Kobayashi, T. Hattori, T. Tamura, S. Ogata, A molecular dynamics study on bubble growth in tungsten under helium irradiation. J. Nucl. Mater. 463, 1071–1074 (2015). https://doi.org/10.1016/j.jnucmat.2014.12.049

    Article  ADS  Google Scholar 

  87. S. Sharafat, A. Takahashi, Q. Hu, N.M. Ghoniem, A description of bubble growth and gas release of helium implanted tungsten. J. Nucl. Mater. 386–388, 900–903 (2009)

    Article  ADS  Google Scholar 

  88. E. Markina, M. Mayer, H.T. Lee, Measurement of He and H depth profiles in tungsten using ERDA with medium heavy ion beams. Nucl. Instrum. Meth. Phys. Res. B. 269, 3094–3097 (2011)

    Article  ADS  Google Scholar 

  89. Y. Zayachuk, M.H.J. ’t Hoen, I. Uytdenhouwen, G. van Oost, Thermal desorption spectroscopy of W–Ta alloys, exposed to high-flux deuterium plasma. Phys. Scr. T145, 14041 (2011). https://doi.org/10.1088/0031-8949/2011/t145/014041

  90. Y.V. Martynenko, M.Y. Nagel, Model of fuzz formation on a tungsten surface. Plasma Phys. Reports 38, 996–999 (2012). https://doi.org/10.1134/S1063780X12110074

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thompson, M. (2018). Introduction. In: Helium Nano-bubble Formation in Tungsten. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-96011-1_1

Download citation

Publish with us

Policies and ethics