Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Quantum mechanics entails effects like superpositions and entanglement that have no classical counterpart. Harnessing these counterintuitive aspects for technological advance is the goal of quantum technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This argumentation is not restricted to interferometers. Grovers algorithm, for instance, exploits quantum effects to learn about an unknown function (the so-called oracle) by performing fewer operations (interrogations) on that function than classically necessary [15].

References

  1. A. Celi, A. Sanpera, V. Ahufinger, M. Lewenstein, Quantum optics and frontiers of physics: the third quantum revolution. Phys. Scr. 92, 013003 (2016)

    Article  ADS  Google Scholar 

  2. J.P. Dowling, G.J. Milburn, Quantum technology: the second quantum revolution. Phil. Trans. R. Soc. Lond. A 361, 1655–1674 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. de Touzalin, C. Marcus, F. Heijman, I. Cirac, R. Murray, T. Calarco, Quantum manifesto. A new era of technology (2016). http://qurope.eu/manifesto

  4. E. Gibney et al., Billion-euro boost for quantum tech. Nature 532, 426 (2016)

    Article  ADS  Google Scholar 

  5. J. Mlynek, Quantum technologies flagship, intermediate report (2017). http://ec.europa.eu/newsroom/document.cfm?doc_id=42721

  6. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464, 45 (2010). https://doi.org/10.1038/nature08812

    Article  ADS  Google Scholar 

  7. E. Cartlidge, Quantum computing: How Close Are We? Opt. Photon. News 27, 30–37 (2016). https://doi.org/10.1364/OPN.27.10.000030

    Article  Google Scholar 

  8. G. Popkin, Scientists are close to building a quantum computer that can beat a conventional one. Science (2016)

    Google Scholar 

  9. D. Castelvecchi, Quantum computers ready to leap out of the lab in 2017. Nature 541, 9 (2017)

    Article  ADS  Google Scholar 

  10. G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P. Rabl, J. Schmiedmayer, Quantum technologies with hybrid systems. PNAS 112, 3866–3873 (2015). https://doi.org/10.1073/pnas.1419326112

    Article  ADS  Google Scholar 

  11. N.M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K.A. Landsman, K. Wright, C. Monroe, Experimental comparison of two quantum computing architectures. PNAS 114, 3305–3310 (2017). https://doi.org/10.1073/pnas.1618020114

    Article  Google Scholar 

  12. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002). https://doi.org/10.1103/RevModPhys.74.145

    Article  ADS  MATH  Google Scholar 

  13. N. Gisin, R. Thew, Quantum communication. Nat. Photon. 1, 165–171 (2007). https://doi.org/10.1038/nphoton.2007.22

    Article  ADS  Google Scholar 

  14. L. Fortnow, The status of the P versus NP problem. Commun. ACM 52, 78–86 (2009)

    Article  Google Scholar 

  15. M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000). https://books.google.de/books?id=-s4DEy7o-a0C

  16. J.L. O’Brien, A. Furusawa, J. Vuckovic, Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009). https://doi.org/10.1038/nphoton.2009.229

    Article  ADS  Google Scholar 

  17. W. Nawrocki, Introduction to Quantum Metrology: Quantum Standards and Instrumentation (Springer, 2015). https://books.google.de/books?id=7VSzBwAAQBAJ

  18. E. Goebel, U. Siegner, Quantum Metrology: Foundation of Units and Measurements (Wiley, 2015). https://books.google.de/books?id=NCCPCQAAQBAJ

  19. J. Brun-Picard, S. Djordjevic, D. Leprat, F. Schopfer, W. Poirier, Practical quantum realization of the ampere from the elementary charge. Phys. Rev. X 6, 041051 (2016). https://doi.org/10.1103/PhysRevX.6.041051

    Article  Google Scholar 

  20. V. Giovannetti, S. Lloyd, L. Maccone, Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004). https://doi.org/10.1126/science.1104149

    Article  ADS  Google Scholar 

  21. V. Giovannetti, S. Lloyd, L. Maccone, Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006). https://doi.org/10.1103/PhysRevLett.96.010401

    Article  ADS  MathSciNet  Google Scholar 

  22. V. Giovannetti, S. Lloyd, L. Maccone, Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011). https://doi.org/10.1038/nphoton.2011.35

    Article  ADS  Google Scholar 

  23. C.F. Roos, M. Chwalla, K. Kim, M. Riebe, R. Blatt, Designer atoms’ for quantum metrology. Nature 443, 316–319 (2006). https://doi.org/10.1038/nature05101

    Article  ADS  Google Scholar 

  24. A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015). https://doi.org/10.1103/RevModPhys.87.637

    Article  ADS  Google Scholar 

  25. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, E. Peik, Single-Ion atomic clock with \(3 \times 10^{-18}\) systematic uncertainty. Phys. Rev. Lett. 116, 063001 (2016). https://doi.org/10.1103/PhysRevLett.116.063001

    Article  ADS  Google Scholar 

  26. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, H. Katori, Cryogenic optical lattice clocks. Nat.Photon. 9, 185–189 (2015). https://doi.org/10.1038/nphoton.2015.5

    Article  ADS  Google Scholar 

  27. B.J. Bloom, T.L. Nicholson, J.R. Williams, S.L. Campbell, M. Bishof, X. Zhang, W. Zhang, S.L. Bromley, J. Ye, An optical lattice clock with accuracy and stability at the \(10^{-18}\) level. Nature 506, 71–75 (2014). https://doi.org/10.1038/nature12941

    Article  ADS  Google Scholar 

  28. T.L. Nicholson, S.L. Campbell, R.B. Hutson, G.E. Marti, B.J. Bloom, R.L. McNally, W. Zhang, M.D. Barrett, M.S. Safronova, G.F. Strouse, W.L. Tew, J. Ye, Systematic evaluation of an atomic clock at \(2\times 10^{-18}\) total uncertainty. Nat. Commun. 6, 6896 (2015). https://doi.org/10.1038/ncomms7896

    Article  ADS  Google Scholar 

  29. C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband, Frequency comparison of two high-accuracy \({\text{Al}}^{+}\) optical clocks. Phys. Rev. Lett. 104, 070802 (2010). https://doi.org/10.1103/PhysRevLett.104.070802

  30. E.M. Kessler, P. Kómár, M. Bishof, L. Jiang, A.S. Sørensen, J. Ye, M.D. Lukin, Heisenberg-limited atom clocks based on entangled qubits. Phys. Rev. Lett. 112, 190403 (2014). https://doi.org/10.1103/PhysRevLett.112.190403

    Article  ADS  Google Scholar 

  31. N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, E. Peik, Improved limit on a temporal variation of \({m}_{p}/{m}_{e}\) from comparisons of \({{\rm yb}^+}\) and cs atomic clocks. Phys. Rev. Lett. 113, 210802 (2014). https://doi.org/10.1103/PhysRevLett.113.210802

  32. R.M. Godun, P.B.R. Nisbet-Jones, J.M. Jones, S.A. King, L.A.M. Johnson, H.S. Margolis, K. Szymaniec, S.N. Lea, K. Bongs, P. Gill, Frequency ratio of two optical clock transitions in \(^{171}{{\rm Yb}^+}\) and constraints on the time variation of fundamental constants. Phys. Rev. Lett. 113, 210801 (2014). https://doi.org/10.1103/PhysRevLett.113.210801

  33. N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, H. Katori, Frequency ratio of Yb and Sr clocks with \(5 \times 10^{-17}\) uncertainty at \(150\,\) seconds averaging time. Nat. Photon. 10, 258–261 (2016). https://doi.org/10.1038/nphoton.2016.20

    Article  ADS  Google Scholar 

  34. P.A. Dirac, The cosmological constants. Nature 139, 323 (1937)

    Article  ADS  Google Scholar 

  35. J.-P. Uzan, The fundamental constants and their variation: observational and theoretical status. Rev. Mod. Phys. 75, 403–455 (2003). https://doi.org/10.1103/RevModPhys.75.403

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. R. Schnabel, N. Mavalvala, D.E. McClelland, P.K. Lam, Quantum metrology for gravitational wave astronomy. Nat. Commun. 1, 121 (2010). https://doi.org/10.1038/ncomms1122

    Article  ADS  Google Scholar 

  37. R.X. Adhikari, Gravitational radiation detection with laser interferometry. Rev. Mod. Phys. 86, 121–151 (2014). https://doi.org/10.1103/RevModPhys.86.121

    Article  ADS  Google Scholar 

  38. B.P. Abbott et al., (LIGO Scientific Collaboration and Virgo Collaboration), GW150914: The advanced LIGO detectors in the era of first discoveries. Phys. Rev. Lett. 116, 131103 (2016). https://doi.org/10.1103/PhysRevLett.116.131103

    Article  ADS  MathSciNet  Google Scholar 

  39. B.P. Abbott et al., (LIGO Scientific and Virgo Collaboration), GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017). https://doi.org/10.1103/PhysRevLett.118.221101

    Article  ADS  Google Scholar 

  40. J. Aasi et al., (The LIGO Scientific Collaboration), Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013). https://doi.org/10.1038/nphoton.2013.177

    Article  ADS  Google Scholar 

  41. J. Miller, L. Barsotti, S. Vitale, P. Fritschel, M. Evans, D. Sigg, Prospects for doubling the range of advanced LIGO. Phys. Rev. D 91, 062005 (2015). https://doi.org/10.1103/PhysRevD.91.062005

    Article  ADS  Google Scholar 

  42. Y. Ma, H. Miao, B.H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, Y. Chen, Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement. Nat. Phys. 13, 776–780 (2017). https://doi.org/10.1038/nphys4118

    Article  Google Scholar 

  43. R. Schnabel, Squeezed states of light and their applications in laser interferometers. Phys. Rep. 684, 1–51 (2017). https://doi.org/10.1016/j.physrep.2017.04.001

  44. C.L. Degen, F. Reinhard, P. Cappellaro, Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017). https://doi.org/10.1103/RevModPhys.89.035002

    Article  ADS  MathSciNet  Google Scholar 

  45. A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009). https://doi.org/10.1103/RevModPhys.81.1051

    Article  ADS  Google Scholar 

  46. H. Zhang, R. McConnell, S. Cuk, Q. Lin, M.H. Schleier-Smith, I.D. Leroux, V. Vuletic, Collective state measurement of mesoscopic ensembles with single-atom resolution. Phys. Rev. Lett. 109, 133603 (2012). https://doi.org/10.1103/PhysRevLett.109.133603

    Article  ADS  Google Scholar 

  47. D.B. Hume, I. Stroescu, M. Joos, W. Muessel, H. Strobel, M.K. Oberthaler, Accurate atom counting in mesoscopic ensembles. Phys. Rev. Lett. 111, 253001 (2013). https://doi.org/10.1103/PhysRevLett.111.253001

    Article  ADS  Google Scholar 

  48. M. Zwierz, C.A. Pérez-Delgado, P. Kok, General optimality of the Heisenberg limit for quantum metrology. Phys. Rev. Lett. 105, 180402 (2010). https://doi.org/10.1103/PhysRevLett.105.180402

    Article  ADS  Google Scholar 

  49. M. Zwierz, C.A. Pérez-Delgado, P. Kok, Ultimate limits to quantum metrology and the meaning of the Heisenberg limit. Phys. Rev. A 85, 042112 (2012). https://doi.org/10.1103/PhysRevA.85.042112

    Article  ADS  Google Scholar 

  50. B.L. Higgins, D.W. Berry, S.D. Bartlett, H.M. Wiseman, G.J. Pryde, Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–396 (2007). https://doi.org/10.1038/nature06257

    Article  ADS  Google Scholar 

  51. M.W. Mitchell, Number-unconstrained quantum sensing. Quantum Sci. Technol. 2, 044005 (2017). http://stacks.iop.org/2058-9565/2/i=4/a=044005

  52. H.F. Hofmann, All path-symmetric pure states achieve their maximal phase sensitivity in conventional two-path interferometry. Phys. Rev. A 79, 033822 (2009). https://doi.org/10.1103/PhysRevA.79.033822

    Article  ADS  Google Scholar 

  53. L. Pezzè, P. Hyllus, A. Smerzi, Phase-sensitivity bounds for two-mode interferometers. Phys. Rev. A 91, 032103 (2015). https://doi.org/10.1103/PhysRevA.91.032103

    Article  ADS  Google Scholar 

  54. M. Kitagawa, Y. Yamamoto, Number-phase minimum-uncertainty state with reduced number uncertainty in a kerr nonlinear interferometer. Phys. Rev. A 34, 3974–3988 (1986). https://doi.org/10.1103/PhysRevA.34.3974

    Article  ADS  Google Scholar 

  55. A. Luis, Nonlinear transformations and the Heisenberg limit. Phys. Rev. A 329, 8–13 (2004). https://doi.org/10.1016/j.physleta.2004.06.080

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Napolitano, M. Koschorreck, B. Dubost, N. Behbood, R.J. Sewell, M.W. Mitchell, Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature 471, 486–489 (2011). https://doi.org/10.1038/nature09778

    Article  ADS  Google Scholar 

  57. R.J. Sewell, M. Napolitano, N. Behbood, G. Colangelo, F. Martin Ciurana, M.W. Mitchell, Ultrasensitive atomic spin measurements with a nonlinear interferometer. Phys. Rev. X 4, 021045 (2014). https://doi.org/10.1103/PhysRevX.4.021045

  58. D. Braun, G. Adesso, F. Benatti, R. Floreanini, U. Marzolino, M.W. Mitchell, S. Pirandola, Quantum enhanced measurements without entanglement (2017). arXiv:1701.05152

  59. L. Pezzé, A. Smerzi, Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009). https://doi.org/10.1103/PhysRevLett.102.100401

    Article  ADS  MathSciNet  Google Scholar 

  60. Y. Kawaguchi, M. Ueda, Spinor Bose-Einstein condensates. Phys. Rep. 520, 253–381 (2012). https://doi.org/10.1016/j.physrep.2012.07.005

  61. D.M. Stamper-Kurn, M. Ueda, Spinor Bose gases: symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 85, 1191 (2013). https://doi.org/10.1103/RevModPhys.85.1191

    Article  ADS  Google Scholar 

  62. B. Lücke, M. Scherer, J. Kruse, L. Pezzè, F. Deuretzbacher, P. Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos, A. Smerzi, C. Klempt, Twin matter waves for interferometry beyond the classical limit. Science 334, 773–776 (2011). https://doi.org/10.1126/science.1208798

    Article  ADS  Google Scholar 

  63. C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G. Kurizki, M.K. Oberthaler, Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature 480, 219 (2011). https://doi.org/10.1038/nature10654

    Article  ADS  Google Scholar 

  64. C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Bookjans, M.S. Chapman, Spin-nematic squeezed vacuum in a quantum gas. Nat. Phys. 8, 305 (2012). https://doi.org/10.1038/nphys2245

    Article  Google Scholar 

  65. S.R. Leslie, J. Guzman, M. Vengalattore, J.D. Sau, M.L. Cohen, D.M. Stamper-Kurn, Amplification of fluctuations in a spinor Bose-Einstein condensate. Phys. Rev. A 79, 043631 (2009). https://doi.org/10.1103/PhysRevA.79.043631

    Article  ADS  Google Scholar 

  66. C. Klempt, O. Topic, G. Gebreyesus, M. Scherer, T. Henninger, P. Hyllus, W. Ertmer, L. Santos, J.J. Arlt, Parametric amplification of vacuum fluctuations in a spinor condensate. Phys. Rev. Lett. 104, 195303 (2010). https://doi.org/10.1103/PhysRevLett.104.195303

    Article  ADS  Google Scholar 

  67. P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Colloquium: stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 84, 1–24 (2012). https://doi.org/10.1103/RevModPhys.84.1

    Article  ADS  Google Scholar 

  68. H. Lee, P. Kok, J.P. Dowling, A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325–2338 (2002). https://doi.org/10.1080/0950034021000011536

    Article  ADS  MathSciNet  Google Scholar 

  69. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Zukowski, Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012). https://doi.org/10.1103/RevModPhys.84.777

    Article  ADS  Google Scholar 

  70. J.P. Dowling, Quantum optical metrology-the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008)

    Article  ADS  Google Scholar 

  71. D.M. Greenberger, M.A. Horne, A. Zeilinger, Going beyond Bell’s theorem, in Bell’s Theorem, Quantum Theory and Conceptions of the Universe (Springer, 1989) pp. 69–72

    Google Scholar 

  72. N.D. Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1840 (1990). https://doi.org/10.1103/PhysRevLett.65.1838

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. J.J. Bollinger, W.M. Itano, D.J. Wineland, D.J. Heinzen, Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996). https://doi.org/10.1103/PhysRevA.54.R4649

    Article  ADS  Google Scholar 

  74. C.C. Gerry, J. Mimih, The parity operator in quantum optical metrology. Contemp. Phys. 51, 497–511 (2010). https://doi.org/10.1080/00107514.2010.509995

    Article  ADS  Google Scholar 

  75. M.J. Holland, K. Burnett, Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett. 71, 1355–1358 (1993). https://doi.org/10.1103/PhysRevLett.71.1355

    Article  ADS  Google Scholar 

  76. R.A. Campos, C.C. Gerry, A. Benmoussa, Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements. Phys. Rev. A 68, 023810 (2003). https://doi.org/10.1103/PhysRevA.68.023810

    Article  ADS  Google Scholar 

  77. S.L. Braunstein, P. van Loock, Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005). https://doi.org/10.1103/RevModPhys.77.513

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. P.M. Anisimov, G.M. Raterman, A. Chiruvelli, W.N. Plick, S.D. Huver, H. Lee, J.P. Dowling, Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys. Rev. Lett. 104, 103602 (2010). https://doi.org/10.1103/PhysRevLett.104.103602

    Article  ADS  Google Scholar 

  79. T. Kim, J. Dunningham, K. Burnett, Precision measurement scheme using a quantum interferometer. Phys. Rev. A 72, 055801 (2005). https://doi.org/10.1103/PhysRevA.72.055801

    Article  ADS  Google Scholar 

  80. J. Dunningham, T. Kim, Using quantum interferometers to make measurements at the Heisenberg limit. J. Mod. Opt. 53, 557–571 (2006). https://doi.org/10.1080/09500340500443268

    Article  ADS  MATH  Google Scholar 

  81. D. Leibfried, M.D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W.M. Itano, J.D. Jost, C. Langer, D.J. Wineland, Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476 (2004). https://doi.org/10.1126/science.1097576

    Article  ADS  Google Scholar 

  82. F. Fröwis, P. Sekatski, W. Dür, Detecting large quantum fisher information with finite measurement precision. Phys. Rev. Lett. 116, 090801 (2016). https://doi.org/10.1103/PhysRevLett.116.090801

    Article  ADS  MathSciNet  Google Scholar 

  83. T. Macri, L. Pezzè, A. Smerzi, Loschmidt Echo for quantum metrology (2016). arXiv:1604.04246

  84. E. Davis, G. Bentsen, M. Schleier-Smith, Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016). https://doi.org/10.1103/PhysRevLett.116.053601

    Article  ADS  Google Scholar 

  85. E. Davis, G. Bentsen, T. Li, M. Schleier-Smith, Advantages of interaction- based readout for quantum sensing, in Proceedings of SPIE, vol. 10118 (2017)

    Google Scholar 

  86. S.P. Nolan, S.S. Szigeti, S.A. Haine, Optimal and Robust quantum etrology using interaction-based readouts (2017). arXiv:1703.10417 [quant-ph]

  87. A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010). https://doi.org/10.1103/RevModPhys.82.1155

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. J. Kong, F. Hudelist, Z.Y. Ou, W. Zhang, Cancellation of internal quantum noise of an amplifier by quantum correlation. Phys. Rev. Lett. 111, 033608 (2013). https://doi.org/10.1103/PhysRevLett.111.033608

    Article  ADS  Google Scholar 

  89. B. Yurke, S.L. McCall, J.R. Klauder, SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033 (1986). https://doi.org/10.1103/PhysRevA.33.4033

    Article  ADS  Google Scholar 

  90. C. Sparaciari, S. Olivares, M.G.A. Paris, Gaussian-state interferometry with passive and active elements. Phys. Rev. A 93, 023810 (2016). https://doi.org/10.1103/PhysRevA.93.023810

    Article  ADS  Google Scholar 

  91. T.J. Herzog, J.G. Rarity, H. Weinfurter, A. Zeilinger, Frustrated two-photon creation via interference. Phys. Rev. Lett. 72, 629–632 (1994). https://doi.org/10.1103/PhysRevLett.72.629

    Article  ADS  Google Scholar 

  92. R.Z. Vered, Y. Shaked, Y. Ben-Or, M. Rosenbluh, A. Peer, Classical-to-quantum transition with broadband four-wave mixing. Phys. Rev. Lett. 114, 063902 (2015). https://doi.org/10.1103/PhysRevLett.114.063902

    Article  ADS  Google Scholar 

  93. Y. Shaked, R. Pomerantz, R.Z. Vered, A. Peer, Observing the nonclassical nature of ultra-broadband bi-photons at ultrafast speed. New J. Phys. 16, 053012 (2014). http://stacks.iop.org/1367-2630/16/i=5/a=053012

  94. V. Boyer, A.M. Marino, R.C. Pooser, P.D. Lett, Entangled images from four-wave mixing. Science 321, 544–547 (2008)

    Article  ADS  Google Scholar 

  95. C.F. McCormick, A.M. Marino, V. Boyer, P.D. Lett, Strong low-frequency quantum correlations from a four-wave-mixing amplifier. Phys. Rev. A 78, 043816 (2008). https://doi.org/10.1103/PhysRevA.78.043816

    Article  ADS  Google Scholar 

  96. R.C. Pooser, A.M. Marino, V. Boyer, K.M. Jones, P.D. Lett, Low-noise amplification of a continuous-variable quantum state. Phys. Rev. Lett. 103, 010501 (2009). https://doi.org/10.1103/PhysRevLett.103.010501

    Article  ADS  Google Scholar 

  97. J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, W. Zhang, Realization of a nonlinear interferometer with parametric amplifiers. Appl. Phys. Lett. 99 (2011)

    Google Scholar 

  98. F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Ou, W. Zhang, Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun. 5, 3049 (2014). https://doi.org/10.1038/ncomms4049

    Article  ADS  Google Scholar 

  99. M. Manceau, G. Leuchs, F. Khalili, M. Chekhova, Detection loss tolerant supersensitive phase measurement with an SU (1, 1) interferometer (2017). arXiv:1705.02662

  100. E. Flurin, N. Roch, F. Mallet, M.H. Devoret, B. Huard, Generating entangled microwave radiation over two transmission lines. Phys. Rev. Lett. 109, 183901 (2012). https://doi.org/10.1103/PhysRevLett.109.183901

    Article  ADS  Google Scholar 

  101. E. Flurin, The Josephson Mixer, a Swiss army knife for microwave quantum optics, Ph.D. thesis, Ecole Normale Supérieure, Paris (2014). https://tel.archives-ouvertes.fr/tel-01241123

  102. A. Bienfait, P. Campagne-Ibarcq, A. Holm-Kiilerich, X. Zhou, S. Probst, J. Pla, T. Schenkel, D. Vion, D. Esteve, J. Morton, et al., Magnetic resonance with squeezed microwaves (2016). arXiv:1610.03329

  103. T.P. Harty, D.T.C. Allcock, C.J. Ballance, L. Guidoni, H.A. Janacek, N.M. Linke, D.N. Stacey, D.M. Lucas, High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett. 113, 220501 (2014). https://doi.org/10.1103/PhysRevLett.113.220501

    Article  ADS  Google Scholar 

  104. J.P. Gaebler, T.R. Tan, Y. Lin, Y. Wan, R. Bowler, A.C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, D.J. Wineland, High-fidelity universal gate set for \({^{9}}{{\rm Be}^+}\) ion qubits. Phys. Rev. Lett. 117, 060505 (2016). https://doi.org/10.1103/PhysRevLett.117.060505

  105. C.J. Ballance, T.P. Harty, N.M. Linke, M.A. Sepiol, D.M. Lucas, High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016). https://doi.org/10.1103/PhysRevLett.117.060504

    Article  ADS  Google Scholar 

  106. H. Häffner, C.F. Roos, R. Blatt, Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  107. R. Blatt, D. Wineland, Entangled states of trapped atomic ions. Nature 453, 1008 (2008). https://doi.org/10.1038/nature07125

    Article  ADS  Google Scholar 

  108. A. Sørensen, K. Mølmer, Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999). https://doi.org/10.1103/PhysRevLett.82.1971

    Article  ADS  Google Scholar 

  109. D. Kielpinski, C. Monroe, D.J. Wineland, Architecture for a large-scale ion-trap quantum computer. Nature 417, 709 (2002)

    Article  ADS  Google Scholar 

  110. C. Monroe, J. Kim, Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013). https://doi.org/10.1126/science.1231298

    Article  ADS  Google Scholar 

  111. J.D. Siverns, Q. Quraishi, Ion trap architectures and new directions (2017). arXiv:1708.04689

  112. J.W. Britton, B.C. Sawyer, A.C. Keith, C.-C.J. Wang, J.K. Freericks, H. Uys, M.J. Biercuk, J.J. Bollinger, Engineered two-dimensional ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012). https://doi.org/10.1038/nature10981

    Article  ADS  Google Scholar 

  113. J.G. Bohnet, B.C. Sawyer, J.W. Britton, M.L. Wall, A.M. Rey, M. Foss-Feig, J.J. Bollinger, Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297–1301 (2016). https://doi.org/10.1126/science.aad9958

    Article  ADS  MathSciNet  MATH  Google Scholar 

  114. M. Gärttner, J.G. Bohnet, A. Safavi-Naini, M.L. Wall, J.J. Bollinger, A.M. Rey, Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nat. Phys. 13, 781–786 (2017). https://doi.org/10.1038/nphys4119

    Article  Google Scholar 

  115. O. Hosten, R. Krishnakumar, N.J. Engelsen, M.A. Kasevich, Quantum phase magnification. Science 352, 1552–1555 (2016). https://doi.org/10.1126/science.aaf3397

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. O. Hosten, N.J. Engelsen, R. Krishnakumar, M.A. Kasevich, Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature (2016)

    Google Scholar 

  117. J. Borregaard, E.D. Davis, G.S. Bentsen, M.H. Schleier-Smith, A.S. Sørensen, One- and two-axis squeezing of atomic ensembles in optical cavities (2017). arXiv:1706.01650

  118. S.L. Rolston, W.D. Phillips, Nonlinear and quantum atom optics. Nature 416, 219–224 (2002). https://doi.org/10.1038/416219a

    Article  ADS  Google Scholar 

  119. S. Inouye, T. Pfau, S. Gupta, A.P. Chikkatur, A. Gorlitz, D.E. Pritchard, W. Ketterle, Phase-coherent amplification of atomic matter waves. Nature 402, 641–644 (1999). https://doi.org/10.1038/45194

    Article  ADS  Google Scholar 

  120. M. Kozuma, Y. Suzuki, Y. Torii, T. Sugiura, T. Kuga, E.W. Hagley, L. Deng, Phase-coherent amplification of matter waves. Science 286, 2309–2312 (1999)

    Article  Google Scholar 

  121. T.M. Hoang, C.S. Gerving, B.J. Land, M. Anquez, C.D. Hamley, M.S. Chapman, Dynamic stabilization of a quantum many-body spin system. Phys. Rev. Lett. 111, 090403 (2013). https://doi.org/10.1103/PhysRevLett.111.090403

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Linnemann .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Linnemann, D. (2018). Introduction. In: Quantum‐Enhanced Sensing Based on Time Reversal of Entangling Interactions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-96008-1_1

Download citation

Publish with us

Policies and ethics