How to Design, Implement, and Manage Accepted Business Processes

  • Volker NissenEmail author
  • Thomas Müllerleile
Part of the Contributions to Management Science book series (MANAGEMENT SC.)


Business process related consulting accounts for a substantial part of the total consulting turnover. However, the positive results that are frequently associated with business process management can only be achieved through triggering of the process by its users and the correct execution by the process operators. Unfortunately, business scandals in various domains have shown that people sometimes do not execute their processes according to given standards or do not use existing processes at all. This failure in process execution can lead not only to suboptimal performance but also to life threatening disasters. By circumvention of official channels, individuals within the company create shadow organizations. Thus, unofficial processes and shadow IT systems emerge, which run alongside the official organization. This in turn has several disadvantages, among others increased complexity and lack of transparency, compliance risks and higher costs. It is, therefore, of crucial importance for clients and consultants alike to understand, why people accept or dismiss official business processes. This contribution proposes a theoretically as well as empirically founded model to explain why some processes are practiced, and others not. Thus, when designing or implementing process changes in the course of consulting projects, these results offer guidance and support for consultants as well as clients.


  1. Ajzen I (1985) From intentions to actions: a theory of planned behavior. In: Beckman J, Kuhl J (eds) Action-control: from cognition to behavior. Springer, Heidelberg, pp 11–35CrossRefGoogle Scholar
  2. Alter S (2014) Theory of workarounds. Commun Assoc Inf Syst 10:1041–1066Google Scholar
  3. Antunes AS, da Cunha PR (2013) Business processes the way they should be: tuning for low friction and sustainability. Proceedings ECIS 2013, Utrecht, Paper 59Google Scholar
  4. Baddoo N, Hall T (2003) De-motivators for software process improvement: an analysis of practitioners views. J Syst Softw 66:23–33CrossRefGoogle Scholar
  5. Bagozzi RP (2007) The legacy of the technology acceptance model and a proposal for a paradigm shift. J Assoc Inf Syst 8:244–254Google Scholar
  6. BDU (2017) Facts & figures zum deutschen Beratungsmarkt 2016/17. BDU e.V., BonnGoogle Scholar
  7. Becker J, Kugeler M, Rosemann M (2012) Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 7th edn. Gabler, WiesbadenCrossRefGoogle Scholar
  8. Behrens S (2009) Shadow systems: the good, the bad and the ugly. Commun ACM 52:124–129CrossRefGoogle Scholar
  9. Bendoly E, Cotteleer MJ (2008) Understanding behavioral sources of process variation following enterprise system deployment. J Oper Manag 26:23–44CrossRefGoogle Scholar
  10. Biernacki P, Waldorf D (1981) Snowball sampling: problems and techniques of chain referral sampling. Sociol Methods Res 10:141–163CrossRefGoogle Scholar
  11. Corbin JM, Strauss AL (1990) Grounded theory research: procedures, canons, and evaluative criteria. Qual Sociol 13:3–21CrossRefGoogle Scholar
  12. Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q 13:319–340CrossRefGoogle Scholar
  13. Dethloff C (2004) Akzeptanz und Nicht-Akzeptanz von technischen Produktinnovationen, BerlinGoogle Scholar
  14. Döring N, Bortz J (2016) Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler, 4th edn. Springer, BerlinCrossRefGoogle Scholar
  15. Fleischmann A, Schmidt W, Stary C, Obermeier S, Brger E (2012) Subject-oriented business process management (S-BPM). Springer, BerlinCrossRefGoogle Scholar
  16. Frei FX, Kalakota R, Marx LMM (1999) Process variation as a determinant of service quality and bank performance: evidence from the retail banking study. Wharton, Working Paper, pp 97–36Google Scholar
  17. Gadenne V (1999) Der kritische Rationalismus und die Rolle von Theorien in der Wirtschaftsinformatik. In: Schütte R, Siedentopf J, Zelewski S (eds) Wirtschaftsinformatik und Wissenschaftstheorie. Working Paper No. 4, PIM-Institut, Universität GH Essen, pp 5–21Google Scholar
  18. Helfferich C (2009) Die Qualität qualitativer Daten. WiesbadenGoogle Scholar
  19. Howe J (2006) The rise of crowdsourcing. Wired Magazine, June 2006Google Scholar
  20. Hruschka DJ, Schwartz D, St. John DC, Picone-Decaro E, Jenkins RA, Carey JW (2004) Reliability in coding open-ended data. Field Methods 16:307–331CrossRefGoogle Scholar
  21. International Atomic Energy Agency (1999) Report on the preliminary fact finding mission following the accident at the nuclear fuel processing facility in Tokaimura, Japan. TR, ViennaGoogle Scholar
  22. Kittur A, Chi EH, Suh B (2008) Crowdsourcing user studies with mechanical turk. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI’08). ACM, New York, pp 453–456Google Scholar
  23. Kramp M (2004) Exploring life and experience through narrative inquiry. In: de Marrais KB, Lapan SD (eds) Foundations for research: methods in education and the social sciences. Routledge, Mahwah, NJ, pp 103–121Google Scholar
  24. London KR (1976) The people side of systems. New YorkGoogle Scholar
  25. Lucke D (1995) Akzeptanz: Legitimität in der Abstimmungsgesellschaft. LeverkusenGoogle Scholar
  26. Markus ML, Keil M (1994) If we build it, they will come: designing information systems that people want to use. Sloan Manag Rev 35(4):11–12Google Scholar
  27. Melao N, Pidd M (2000) A conceptual framework for understanding business processes and business process modelling. Inf Syst J 10:105–129CrossRefGoogle Scholar
  28. Müllerleile T, Nissen V (2014) When processes alienate customers: towards a theory of process acceptance. In: Nonopoulos A, Schmidt W (eds) Proceedings S-BPM one. Ingolstadt, LNBIP, pp 171–180Google Scholar
  29. Müllerleile T, Ritter S, Englisch L, Nissen V, Joenssen D (2015) The influence of process acceptance on BPM: an empirical investigation. Proceedings of the 2015 I.E. 17th conference on business informatics (CBI 2015), pp 125–132Google Scholar
  30. Müllerleile T, Martinovic D, Joennssen D, Orner M, Grimm M, Nissen V, Reuss H-C (2016) Fully charged: process acceptance of different ev charging processes. Available at SSRN:
  31. Nguyen H, Dumas M, La Rosa M, Maggi FM, Suriadi S (2014) Mining business processes deviance: a quest for accuracy. Proceedings of “On the move to meaningful internet systems” (OTM 2014), LNCS 8841, Berlin, pp 436–445Google Scholar
  32. Niazi M, Wilson D, Zowghi D (2006) Critical success factors for software process improvement implementation: an empirical study. Softw Process Improv Pract 11:193–211CrossRefGoogle Scholar
  33. Nissen V, Müllerleile T (2017) Prozessakzeptanzforschung. Warum manche Prozesse gelebt und andere umgangen werden. In: Corsten H, Roth T (eds) Handbuch Dienstleistungsmanagement. Vahlen, München, pp 1049–1073Google Scholar
  34. Nissen V, Müllerleile T, Kazakowa E, Lezina T (2016) Analyzing process acceptance with IT-enabled experimental research. Vestn Econ (3):109–129CrossRefGoogle Scholar
  35. Parasuraman A, Zeithaml VA, Berry LL (1988) SERVQUAL: a multiple-item scale for measuring consumer perceptions of service quality. J Retail 64:12–40Google Scholar
  36. Reichwald R (1978) Zur Notwendigkeit der Akzeptanzforschung bei der Entwicklung neuer Systeme der Bürotechnik. Working Paper, Hochschule d. Bundeswehr, MünchenGoogle Scholar
  37. Ritter S, Müllerleile T, Nissen V (2016) Akzeptanz – der Schlüssel für gelebte Prozesse. Qualität und Zuverlässigkeit 61(4)Google Scholar
  38. Rozinat A, van der Aalst W (2008) Conformance checking of processes based on monitoring real behavior. Inf Syst 33:64–95CrossRefGoogle Scholar
  39. Strauss LA (1987) Qualitative analysis for social scientists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. Strauss AL, Corbin JM (1990) Basics of qualitative research: grounded theory procedures and techniques. Sage, Newbury Park, CAGoogle Scholar
  41. Tsikriktsis N, Heineke J (2004) The impact of process variation on customer dissatisfaction: evidence from the U.S. domestic airline industry. Decis Sci 35:129–142CrossRefGoogle Scholar
  42. Venkatesh V, Bala H (2008) Technology acceptance model 3 and a research agenda on interventions. Decis Sci 39:273–315CrossRefGoogle Scholar
  43. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software engineering. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Economic Sciences and MediaIlmenau University of TechnologyIlmenauGermany
  2. 2.Technische Universität IlmenauIlmenauGermany

Personalised recommendations