Skip to main content

Artificial Compound Eye and Synthetic Neural System for Motion Recognition

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Included in the following conference series:

Abstract

This paper presents modelling of a fruit fly’s visual neural system for motion recognition employing non-spiking Hodgkin-Huxley neurons. Motion detection operates based on the Hassenstein-Reichardt correlator principle. An array of motion detectors reveals the velocity field pattern, and an additional summation layer allows calculation of the vanishing point. The synthetic nervous system is successfully designed using the functional subnetwork approach. This allows the model to be scaled up to several hundred motion detectors according to the number of ommatidia. The output provides the abstraction of motion on a couple of exit neurons, which can be used in further implementation of control for the mobile robot. The simulation of operation on artificially generated input signals for different types of motion, and a summary of neuronal activities are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, A., Gong, Z., Li, H., Li, Y., Liu, L., Liu, Q., Lu, H., Pan, Y., Ren, Q., Wu, Z., Zhang, K., Zhu, Y.: Vision, memory, and cognition in drosophila. In: Learning and Memory: A Comprehensive Reference, 2nd edn., pp. 483–503 (2017)

    Chapter  Google Scholar 

  2. Serbe, E., Meier, M., Leonhardt, A., Borst, A.: Comprehensive characterization of the major presynaptic elements to the Drosophila OFF motion detector. Neuron 89(4), 829–841 (2016)

    Article  Google Scholar 

  3. Ammer, G., Leonhardt, A., Bahl, A., Dickson, B.J., Borst, A.: Functional specialization of neural input elements to the Drosophila ON motion detector. Curr. Biol. 25(17), 2247–2253 (2015)

    Article  Google Scholar 

  4. Ngo, K.T., Andrade, I., Hartenstein, V.: Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system: a user’s guide to the dynamic morphology of the developing optic lobe. Dev. Biol. 428(1), 1–24 (2017)

    Article  Google Scholar 

  5. Hassenstein, B., Reichardt, W.: Structure of a mechanism of perception of optical movement. In: Proceedings of the 1st International Conference on Cybernetics, pp. 797–801 (1956)

    Google Scholar 

  6. Rajesh, S., O’Carroll, D.C., Abbott, D.: Elaborated reichardt correlators for velocity estimation tasks. Biomedical Applications of Micro-and Nanoengineering, International Society for Optics and Photonics 4937, 241–254 (2002)

    Article  Google Scholar 

  7. Zhang, Z., Yue, S., Zhang, G.: Fly visual system inspired artificial neural network for collision detection. Neurocomputing 153, 221–234 (2015)

    Article  Google Scholar 

  8. Stafford, R., Santer, R.D., Rind, F.C.: A bio-inspired visual collision detection mechanism for cars: combining insect inspired neurons to create a robust system. BioSystems 87(2–3), 164–171 (2007)

    Article  Google Scholar 

  9. Missler, J.M., Kamangar, F.A.: A neural network for pursuit tracking inspired by the fly visual system. Neural Networks 8(3), 463–480 (1995)

    Article  Google Scholar 

  10. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front. Neurorobotics 11(37), 1–19 (2017)

    Google Scholar 

  11. Borst, A.: Fly visual course control: behaviour, algorithms and circuits. Nat. Rev. Neurosci. 15(9), 590–599 (2014)

    Article  Google Scholar 

  12. Škulj, G., Bračun, D.: Research of a lensless artificial compound eye. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds.) Living Machines 2017, vol. 10384, pp. 406–417. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_34

    Chapter  Google Scholar 

  13. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187(2), 280–288 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drago Bračun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bračun, D., Szczecinski, N.S., Škulj, G., Hunt, A.J., Quinn, R.D. (2018). Artificial Compound Eye and Synthetic Neural System for Motion Recognition. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics