Skip to main content

An Analysis of a Ring Attractor Model for Cue Integration

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Included in the following conference series:

Abstract

Animals and robots must constantly combine multiple streams of noisy information from their senses to guide their actions. Recently, it has been proposed that animals may combine cues optimally using a ring attractor neural network architecture inspired by the head direction system of rats augmented with a dynamic re-weighting mechanism. In this work we report that an older and simpler ring attractor network architecture, requiring no re-weighting property combines cues according to their certainty for moderate cue conflicts but converges on the most certain cue for larger conflicts. These results are consistent with observations in animal experiments that show sub-optimal cue integration and switching from cue integration to cue selection strategies. This work therefore demonstrates an alternative architecture for those seeking neural correlates of sensory integration in animals. In addition, performance is shown robust to noise and miniaturization and thus provides an efficient solution for artificial systems.

M. Mangan and S. Yue—Joint last authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shettleworth, S.J.: Cognition, Evolution, and Behavior. Oxford University Press, Oxford (2010)

    Google Scholar 

  2. Ernst, M.O., Knoblich, G.: A Bayesian view on multimodal cue integration. In: Human Body Perception from the Inside Out, vol. 131, pp. 105–131 (2006)

    Google Scholar 

  3. Blair, H.T., Sharp, P.E.: Visual and vestibular influences on head-direction cells in the anterior thalamus of the rat. Behav. Neurosci. 110(4), 643 (1996)

    Article  Google Scholar 

  4. Seelig, J.D., Jayaraman, V.: Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015). https://doi.org/10.1038/nature14446

    Article  Google Scholar 

  5. Cheng, K., Shettleworth, S.J., Huttenlocher, J., Rieser, J.J.: Bayesian integration of spatial information. Psychol. Bull. 133(4), 625 (2007)

    Article  Google Scholar 

  6. Kording, K.P., Wolpert, D.M.: Bayesian integration in sensorimotor learning. Nature 427(6971), 244 (2004)

    Article  Google Scholar 

  7. Kording, K.P.: Bayesian statistics: relevant for the brain? Curr. Opin. Neurobiol. 25, 130–133 (2014)

    Article  Google Scholar 

  8. Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870), 429 (2002)

    Article  Google Scholar 

  9. Kam, M., Zhu, X., Kalata, P.: Sensor fusion for mobile robot navigation. Proc. IEEE 85(1), 108–119 (1997)

    Article  Google Scholar 

  10. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT press, Cambridge (2005)

    MATH  Google Scholar 

  11. Fuentes-Pacheco, J., Ruiz-Ascencio, J., Rendón-Mancha, J.M.: Visual simultaneous localization and mapping: a survey. Artif. Intell. Rev. 43(1), 55–81 (2015)

    Article  Google Scholar 

  12. Zhang, K.: Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16(6), 2112–2126 (1996)

    Article  Google Scholar 

  13. Skaggs, W.E., Knierim, J.J., Kudrimoti, H.S., McNaughton, B.L.: A model of the neural basis of the rat’s sense of direction. In: Advances in Neural Information Processing Systems, pp. 173–180 (1995)

    Google Scholar 

  14. Touretzky, D.S.: Attractor network models of head direction cells. In: Head Direction Cells and the Neural Mechanisms of Spatial Orientation, pp. 411–432 (2005)

    Google Scholar 

  15. Jeffery, K.J., Page, H.J., Stringer, S.M.: Optimal cue combination and landmark-stability learning in the head direction system. J. Physiol. 594(22), 6527–6534 (2016)

    Article  Google Scholar 

  16. Knight, R., Piette, C.E., Page, H., Walters, D., Marozzi, E., Nardini, M., Jeffery, K.J.: Weighted cue integration in the rodent head direction system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369(1635) (2014). https://doi.org/10.1098/rstb.2012.0512

    Article  Google Scholar 

  17. Beer, R.D.: On the dynamics of small continuous-time recurrent neural networks. Adapt. Behav. 3(4), 469–509 (1995)

    Article  Google Scholar 

  18. Pfeiffer, K., Homberg, U.: Organization and functional roles of the central complex in the insect brain. Annu. Rev. Entomol. 59, 165–184 (2014)

    Article  Google Scholar 

  19. Heinze, S.: Unraveling the neural basis of insect navigation. Curr. Opin. Insect Sci. 24, 58–67 (2017)

    Article  Google Scholar 

  20. Page, H.J., Walters, D.M., Knight, R., Piette, C.E., Jeffery, K.J., Stringer, S.M.: A theoretical account of cue averaging in the rodent head direction system. Philos. Trans. R. Soc. B Biol. Sci. 369(1635), 20130283 (2014)

    Article  Google Scholar 

  21. Page, H.J., Walters, D., Stringer, S.M.: Architectural constraints are a major factor reducing path integration accuracy in the rat head direction cell system. Front. Comput. Neurosci. 9, 10 (2015)

    Article  Google Scholar 

  22. Kim, S.S., Rouault, H., Druckmann, S., Jayaraman, V.: Ring attractor dynamics in the Drosophila central brain. Science 356(6340), 849–853 (2017)

    Article  Google Scholar 

  23. Cope, A.J., Sabo, C., Vasilaki, E., Barron, A.B., Marshall, J.A.: A computational model of the integration of landmarks and motion in the insect central complex. PLoS ONE 12(2), e0172325 (2017)

    Article  Google Scholar 

  24. Kakaria, K.S., de Bivort, B.L.: Ring attractor dynamics emerge from a spiking model of the entire protocerebral bridge. Front. Behav. Neurosci. 11, 8 (2017)

    Article  Google Scholar 

  25. Homberg, U.: Flight-correlated activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria. J. Comp. Physiol. A 175(5), 597–610 (1994)

    Article  Google Scholar 

  26. Barron, A.B., Klein, C.: What insects can tell us about the origins of consciousness. Proc. Natl. Acad. Sci. 113(18), 4900–4908 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by EU FP7 projects HAZCEPT (318907), HORIZON 2020 project STEP2DYNA (691154). We also thank Prof. Kate Jeffery and Dr. Hector Page for provision of data shown in Fig. 4(d).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelong Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, X., Mangan, M., Yue, S. (2018). An Analysis of a Ring Attractor Model for Cue Integration. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics