Skip to main content

Insect Behavioral Evidence of Spatial Memories During Environmental Reconfiguration

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Included in the following conference series:

Abstract

Insects are great explorers, able to navigate through long-distance trajectories and successfully find their way back. Their navigational routes cross dynamic environments suggesting adaptation to novel configurations. Arthropods and vertebrates share neural organizational principles and it has been shown that rodents modulate their neural spatial representation accordingly with environmental changes. However, it is unclear whether insects reflexively adapt to environmental changes or retain memory traces of previously explored situations. We sought to disambiguate between insect behavior in environmental novel situations and reconfiguration conditions. An immersive mixed-reality multi-sensory setup was built to replicate multi-sensory cues. We have designed an experimental setup where female crickets Gryllus Bimaculatus were trained to move towards paired auditory and visual cues during primarily phonotactic driven behavior. We hypothesized that insects were capable of identifying sensory modifications in known environments. Our results show that, regardless of the animal’s history, novel situation conditions did not compromise the animals performance and navigational directionality towards a new target location. However, in trials where visual and auditory stimuli were spatially decoupled, the animals heading variability towards a previously known position significantly increased. Our findings showed that crickets can behaviorally manifest environmental reconfiguration, suggesting the encoding for spatial representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vickers, N.J.: Mechanisms of animal navigation in odor plumes. Biol. Bull. 198(2), 203–212 (2000)

    Article  Google Scholar 

  2. Mathews, Z., Lechón, M., Calvo, J.B., Dhir, A., Duff, A., Verschure, P.F., et al.: Insect-like mapless navigation based on head direction cells and contextual learning using chemo-visual sensors. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 2243–2250. IEEE (2009)

    Google Scholar 

  3. Thorson, J., Weber, T., Huber, F.: Auditory behavior of the cricket. J. Comp. Physiol. 146(3), 361–378 (1982)

    Article  Google Scholar 

  4. Mizunami, M., Weibrecht, J.M., Strausfeld, N.J.: Mushroom bodies of the cockroach: their participation in place memory. J. Comp. Neurol. 402(4), 520–537 (1998)

    Article  Google Scholar 

  5. Wessnitzer, J., Mangan, M., Webb, B.: Place memory in crickets. Proc. R. Soc. Lond. B Biol. Sci. 275(1637), 915–921 (2008)

    Article  Google Scholar 

  6. Srinivasan, M.V., Poteser, M., Kral, K.: Motion detection in insect orientation and navigation. Vis. Res. 39(16), 2749–2766 (1999)

    Article  Google Scholar 

  7. Zhang, S., Mizutani, A., Srinivasan, M.V.: Maze navigation by honeybees: learning path regularity. Learn. Mem. 7(6), 363–374 (2000)

    Article  Google Scholar 

  8. Skinner, B.F.: The Behavior of Organisms: An Experimental Analysis (1938)

    Google Scholar 

  9. Von Frisch, K.: The Dance Language and Orientation of Bees (1967)

    Google Scholar 

  10. Nieh, J.C.: A negative feedback signal that is triggered by peril curbs honey bee recruitment. Curr. Biol. 20(4), 310–315 (2010)

    Article  Google Scholar 

  11. Dacke, M., Srinivasan, M.V.: Evidence for counting in insects. Anim. Cogn. 11(4), 683–689 (2008)

    Article  Google Scholar 

  12. Dill, M., Wolf, R., Heisenberg, M.: Visual pattern recognition in drosophila involves retinotopic matching. Nature 365(6448), 751 (1993)

    Article  Google Scholar 

  13. Collett, T., Fauria, K., Dale, K., Baron, J.: Places and patternsa study of context learning in honeybees. J. Comp. Physiol. A 181(4), 343–353 (1997)

    Article  Google Scholar 

  14. Brembs, B., Wiener, J.: Context and occasion setting in drosophila visual learning. Learn. Mem. 13(5), 618–628 (2006)

    Article  Google Scholar 

  15. Horseman, G., Huber, F.: Sound localisation in crickets. J. Comp. Physiol. A 175(4), 399–413 (1994)

    Article  Google Scholar 

  16. Huber, F.: Central nervous control of sound production in crickets and some speculations on its evolution. Evolution 16, 429–442 (1962)

    Article  Google Scholar 

  17. Walker, T.J.: Specificity in the response of female tree crickets (orthoptera, gryllidae, oecanthinae) to calling songs of the males. Ann. Entomol. Soc. Am. 50(6), 626–636 (1957)

    Article  Google Scholar 

  18. Latimer, W., Lewis, D.: Song harmonic content as a parameter determining acoustic orientation behaviour in the cricketteleogryllus oceanicus (le guillou). J. Comp. Physiol. A 158(4), 583–591 (1986)

    Article  Google Scholar 

  19. Wendler, G., Dambach, M., Schmitz, B., Scharstein, H.: Analysis of the acoustic orientation behavior in crickets (gryllus campestris l.). Naturwissenschaften 67(2), 99–101 (1980)

    Article  Google Scholar 

  20. Kramer, E.: Orientation of the male silkmoth to the sex attractant bombykol. Olfaction Taste 5, 329–335 (1975)

    Google Scholar 

  21. Weber, T., Thorson, J., Huber, F.: Auditory behavior of the cricket. J. Comp. Physiol. 141(2), 215–232 (1981)

    Article  Google Scholar 

  22. Honegger, H.-W.: A preliminary note on a new optomotor response in crickets: antennal tracking of moving targets. J. Comp. Physiol. 142(3), 419–421 (1981)

    Article  Google Scholar 

  23. Kammerer, R., Bauer, W., Honegger, H.: On-line analysis of rapid motion with a microcomputer. J. Neurosci. Methods 19(2), 89–94 (1987)

    Article  Google Scholar 

  24. Domnisoru, C., Kinkhabwala, A.A., Tank, D.W.: Membrane potential dynamics of grid cells. Nature 495(7440), 199–204 (2013)

    Article  Google Scholar 

  25. Emoto, S., Ando, N., Takahashi, H., Kanzaki, R.: Insect-controlled robot-evaluation of adaptation ability. J. Robot. Mechatron. 19(4), 436 (2007)

    Article  Google Scholar 

  26. Shiramatsu, D., Ando, N., Takahashi, H., Kanzaki, R., Fujita, S., Sano, Y., Andoh, T.: Target selection mechanism for collision-free navigation of robots based on antennal tracking strategies of crickets. In: 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 259–264. IEEE (2010)

    Google Scholar 

  27. Kleindienst, H.-U., Wohlers, D.W., Larsen, O.N.: Tympanal membrane motion is necessary for hearing in crickets. J. Comp. Physiol. 151(4), 397–400 (1983)

    Article  Google Scholar 

  28. Morris, R.: Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11(1), 47–60 (1984)

    Article  Google Scholar 

  29. Leutgeb, J.K., Leutgeb, S., Moser, M.-B., Moser, E.I.: Pattern separation in the dentate gyrus and ca3 of the hippocampus. Science 315(5814), 961–966 (2007)

    Article  Google Scholar 

  30. Tolman, E.C.: Cognitive maps in rats and men. Psychol. Rev. 55(4), 189 (1948)

    Article  Google Scholar 

  31. O’keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map, vol. 3. Clarendon Press, Oxford (1978)

    Google Scholar 

  32. Strausfeld, F., Nicholas, J., Hirth, F.: Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340(6129), 157–161 (2013)

    Article  Google Scholar 

  33. Tomer, R., Denes, A.S., Tessmar-Raible, K., Arendt, D.: Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142(5), 800–809 (2010)

    Article  Google Scholar 

  34. Hirth, F., Reichert, H.: BioEssays

    Google Scholar 

  35. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2005)

    Article  Google Scholar 

  36. Taube, J.S.: Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J. Neurosci. 15(1), 70–86 (1995)

    Article  Google Scholar 

  37. Homberg, U.: In search of the sky compass in the insect brain. Naturwissenschaften 91(5), 199–208 (2004)

    Article  Google Scholar 

  38. Mathews, Z., et al.: Generic neuromorphic principles of cognition and attention for ants, humans and real-world artefacts: a comparative computational approach (2011)

    Google Scholar 

  39. Rinderer, T.E., Baxter, J.R.: Honey bee hoarding behaviour: effects of previous stimulation by empty comb. Anim. Behav. 27, 426–428 (1979)

    Article  Google Scholar 

  40. Wang, Y., Kocher, S.D., Linksvayer, T.A., Grozinger, C.M., Page, R.E., Amdam, G.V.: Regulation of behaviorally associated gene networks in worker honey bee ovaries. J. Exp. Biol. 215(1), 124–134 (2012)

    Article  Google Scholar 

  41. Maffei, G., Santos-Pata, D., Marcos, E., Sánchez-Fibla, M., Verschure, P.F.: An embodied biologically constrained model of foraging: from classical and operant conditioning to adaptive real-world behavior in DAC-X. Neural Netw. 72, 88–108 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. [341196] cDAC.

Author Contributions Statement. Z.M. and P.V. conceived the experiment, D.S.P. conducted the experiment and analyzed the results. D.S.P, Z.M., and A.E developed the setup. All authors were involved in the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Santos-Pata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos-Pata, D., Escuredo, A., Mathews, Z., Verschure, P.F.M.J. (2018). Insect Behavioral Evidence of Spatial Memories During Environmental Reconfiguration. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics