Skip to main content

Investigation of Tip Extrusion as an Additive Manufacturing Strategy for Growing Robots

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Included in the following conference series:

  • 2689 Accesses

Abstract

This paper presents a new design for material extrusion as embeddable additive manufacturing technology for growing robots inspired by plant roots. The conceptual design is proposed and based on the deposition of thermoplastic material a complete layer at a time. To guide the design of the system, we first studied the thermal properties through approximated models considering PLA (poly-lactic acid) as feeding material. The final shape and constituent materials are then accordingly selected. We obtained a simple design that allows miniaturization and a fast assembly of the system, and we demonstrate the feasibility of the design by testing the assembled system. We also show the accuracy of our thermal prediction by comparing the thermal distribution obtained from FEM simulations with experimental data, obtaining a maximal error of ~8 °C. Preliminary experimental growth results are encouraging regarding the potentialities of this approach that can potentially achieve 0.15 \( \div \) 0.30 mm/s of growth speed. Our results suggest that this strategy can be explored and exploited for enabling the growth from the tip of artificial systems enouncing robots’ plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballard, L.A., Sabanovic, S., Kaur, J., Milojevic, S.: George Charles Devol, Jr. [history]. IEEE Robot. Autom. Mag. 19(3), 114–119 (2012)

    Article  Google Scholar 

  2. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)

    Article  Google Scholar 

  3. Laschi, C., Mazzolai, B., Cianchetti, M.: Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1(1), eaah3690 (2016)

    Article  Google Scholar 

  4. Fukuda, T., Nakagawa, S.: Dynamically reconfigurable robotic system. In: Proceedings of 1998 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, pp. 1581–1586. IEEE (1988)

    Google Scholar 

  5. Fukuda, T., Ueyama, T.: Cellular Robotics and Micro Robotic Systems, vol. 10. World Scientific, Singapore (1994)

    Google Scholar 

  6. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Dario, P., Sandini, G., Aebischer, P. (eds.) Robots and Biological Systems: Towards a New Bionics?. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 102, pp. 703–712. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-642-58069-7_38

    Chapter  Google Scholar 

  7. Gilpin, K., Rus, D.: Modular robot systems. IEEE Robot. Autom. Mag. 17(3), 38–55 (2010)

    Article  Google Scholar 

  8. Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008)

    Article  Google Scholar 

  9. Yim, M., White, P., Park, M., Sastra, J.: Modular self-reconfigurable robots. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science, pp. 5618–5631. Springer, New York (2009). https://doi.org/10.1007/978-0-387-30440-3

    Chapter  Google Scholar 

  10. Wei, H., Chen, Y., Tan, J., Wang, T.: Sambot: a self-assembly modular robot system. IEEE/ASME Trans. Mechatron. 16(4), 745–757 (2011)

    Article  Google Scholar 

  11. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)

    Article  Google Scholar 

  12. Wang, T., Li, H., Meng, C.: Collective grasping for non-cooperative objects using modular self-reconfigurable robots. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, pp. 3296–3301. IEEE (2015)

    Google Scholar 

  13. Spröwitz, A., Moeckel, R., Vespignani, M., Bonardi, S., Ijspeert, A.J.: Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot. Robot. Auton. Syst. 62(7), 1016–1033 (2014)

    Article  Google Scholar 

  14. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974 (2000)

    Article  Google Scholar 

  15. Bartlett, N.W., Tolley, M.T., Overvelde, J.T., Weaver, J.C., Mosadegh, B., Bertoldi, K., Whitesides, G.M., Wood, R.J.: A 3D-printed, functionally graded soft robot powered by combustion. Science 349(6244), 161–165 (2015)

    Article  Google Scholar 

  16. Kim, J., Alspach, A., Yamane, K.: 3D printed soft skin for safe human-robot interaction. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, pp. 2419–2425. IEEE (2015)

    Google Scholar 

  17. Brodbeck, L., Wang, L., Iida, F.: Robotic body extension based on hot melt adhesives. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, pp. 4322–4327. IEEE (2012)

    Google Scholar 

  18. Wang, L., Brodbeck, L., Iida, F.: Mechanics and energetics in tool manufacture and use: a synthetic approach. J. R. Soc. Interface 11(100), 20140827 (2014)

    Article  Google Scholar 

  19. Wang, L., Culha, U., Iida, F.: A dragline-forming mobile robot inspired by spiders. Bioinspir. Biomim. 9(1), 016006 (2014)

    Article  Google Scholar 

  20. Sadeghi, A., Mondini, A., Mazzolai, B.: Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. Soft Robot. 4(3), 211–223 (2017)

    Google Scholar 

  21. Baluška, F., Mancuso, S., Volkmann, D., Barlow, P.W.: Root apex transition zone: a signalling–response nexus in the root. Trends Plant Sci. 15(7), 402–408 (2010)

    Article  Google Scholar 

  22. Sadeghi, A., Tonazzini, A., Popova, L., Mazzolai, B.: A novel growing device inspired by plant root soil penetration behaviors. PloS ONE 9(2), e90139 (2014)

    Article  Google Scholar 

  23. Hart, J.W.: Plant Tropisms: and Other Growth Movements. Springer Science & Business Media, Amsterdam (1990)

    Google Scholar 

  24. Hodge, A.: The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol. 162(1), 9–24 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dario Lunni or Barbara Mazzolai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lunni, D., Del Dottore, E., Sadeghi, A., Cianchetti, M., Sinibaldi, E., Mazzolai, B. (2018). Investigation of Tip Extrusion as an Additive Manufacturing Strategy for Growing Robots. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics