Skip to main content

Emulating Balance Control Observed in Human Test Subjects with a Neural Network

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Included in the following conference series:

Abstract

Human balance is likely achieved using many concurrent control loops that combine to react to changes in environment, posture, center of mass and other factors affecting stability. Though numerous engineering models of human balance control have been tested, no models of how these controllers might operate within the nervous system have yet been established. We have developed such a neural model, focusing on a proprioceptive feedback loop. For this model, angular position is measured at the ankle and corrective torque is applied about the joint to maintain a vertical orientation. We built a physical model of an upright human maintaining balance with an inverted pendulum actuated by a torque-control motor. We used an engineering control model for human balance to calculate the control parameters that will cause our physical model to have the same dynamics as human test subject data collected on a tilting platform. We reconstruct this controller in a neural network and compare performance between the neural and classical engineering models in experiment, demonstrating that the design tools in this paper can be used to emulate a classical controller using a neural network with relatively few free parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mead, C.: Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990)

    Article  Google Scholar 

  2. Schuman, C.D., Potok, T.E., Patton, R.M., Birdwell, J.D., Dean, M.E., Rose, G.S., Plank, J.S.: A survey of neuromorphic computing and neural networks in hardware. arXiv:1705.06963 [cs], May 2017

  3. Chu, M., Kim, B., Park, S., Hwang, H., Jeon, M., Lee, B.H., Lee, B.G.: Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS neuron. IEEE Trans. Ind. Electron. 62(4), 2410–2419 (2015)

    Article  Google Scholar 

  4. Franco, J.A.G., Padilla, J.L.d.V., Cisneros, S.O.: Event-based image processing using a neuromorphic vision sensor. In: IEEE International Autumn Meeting on Power Electronics and Computing (ROPEC), pp. 1–6, November 2013

    Google Scholar 

  5. Corradi, F., You, H., Giulioni, M., Indiveri, G.: Decision making and perceptual bistability in spike-based neuromorphic VLSI systems. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2708–2711, May 2015

    Google Scholar 

  6. Hunt, A.J., Schmidt, M., Fischer, M.S., Quinn, R.D.: A biologically based neural system coordinates the joints and legs of a tetrapod. Bioinspiration Biomim. 10(5), 055004 (2015). http://stacks.iop.org/1748-3190/10/i=5/a=055004?key=crossref.20c5a9df87c65225ca5da5f729b912e6

    Article  Google Scholar 

  7. Li, W., Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A neural network with central pattern generators entrained by sensory feedback controls walking of a bipedal model. In: Lepora, N.F.F., et al. (eds.) Living Machines 2016. LNCS (LNAI), vol. 9793, pp. 144–154. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42417-0_14

    Chapter  Google Scholar 

  8. Hunt, A.J., Szczecinski, N.S., Andrada, E., Fischer, M., Quinn, R.D.: Using animal data and neural dynamics to reverse engineer a neuromechanical rat model. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS (LNAI), vol. 9222, pp. 211–222. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22979-9_21

    Chapter  Google Scholar 

  9. Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T.C., Rasmussen, D., Choo, X., Voelker, A.R., Eliasmith, C.: Nengo: a Python tool for building large-scale functional brain models. Front. Neuroinform. 7 (2014). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880998/

  10. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front. Neurorobot. 11 (2017). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552699/

  11. Szczecinski, N.S., Hunt, A.J., Quinn, R.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. 111(1), 105–127 (2017)

    Article  MathSciNet  Google Scholar 

  12. Hilts, W.W., Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: Simulation of human balance control using an inverted pendulum model. In: Mangan, M., et al. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 170–180. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_15

    Chapter  Google Scholar 

  13. Peterka, R.J.: Simplifying the complexities of maintaining balance. IEEE Eng. Med. Biol. Mag. 22(2), 63–68 (2003)

    Article  Google Scholar 

  14. Peterka, R.J., Loughlin, P.J.: Dynamic regulation of sensorimotor integration in human postural control. J. Neurophysiol. 91(1), 410–423 (2004). http://jn.physiology.org/content/91/1/410

    Article  Google Scholar 

  15. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W., Edwards, D.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187, 280–288 (2010)

    Article  Google Scholar 

  16. Assländer, L., Peterka, R.J.: Sensory reweighting dynamics following removal and addition of visual and proprioceptive cues. J. Neurophysiol. 116(2), 272–285 (2016). http://jn.physiology.org/content/116/2/272

    Article  Google Scholar 

  17. Steele, A.G., Hunt, A., Etoundi, A.C.: Development of a bio-inspired knee joint mechanism for a bipedal robot. In: Mangan, M., et al. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 418–427. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_35

    Chapter  Google Scholar 

  18. Narioka, K., Tsugawa, S., Hosoda, K.: 3D limit cycle walking of musculoskeletal humanoid robot with flat feet. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4676–4681, October 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wade W. Hilts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hilts, W.W., Szczecinski, N.S., Quinn, R.D., Hunt, A.J. (2018). Emulating Balance Control Observed in Human Test Subjects with a Neural Network. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics