Skip to main content

Estimating Body Pitch from Distributed Proprioception in a Hexapod

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Included in the following conference series:

  • 2567 Accesses

Abstract

Adaptability of legged locomotion relies on distributed proprioceptive feedback from the legs. Apart from low-level control of leg movements, proprioceptive cues may also be integrated to estimate overall locomotion parameters relevant to high-level control of behavior. For example, this could be relevant for reliable estimates of body inclination relative to the substrate, particularly in animals that lack dedicated graviceptors such as statocycsts. With regard to robotic systems, distributed proprioception could exploit physical interaction with the substrate to improve the robustness of inclination estimates. In insect locomotion, it is unknown how overall parameters such as body inclination or forward velocity may be represented in the nervous system. If proprioceptive encoding was optimal, the afferent activity pattern of distributed proprioceptive cues from across the body should be a suitable representation in itself. However, given noisy encoding in multiple afferent spike trains, it is unknown (i) how reliable the parameter estimates can be, and (ii) which parts of a distributed proprioceptive code are most relevant.

Here we use a database on unrestrained whole-body kinematics of walking and climbing stick insects in conjunction with simple spiking proprioceptor models to transform sets of joint angle time courses into corresponding sets of spike trains. In total, we tested four different types of models: a reference model without proprioceptive encoding and three proprioception models with different filter properties and spike generators. Within each model, we compared 4 × 4 conditions that differed in number and combination of joints and legs. Our results show that the contribution of middle and hind legs is of similar relevance for the estimation of body pitch, whereas front legs contribute only very little. Furthermore, femoral levation proved to be the most relevant degree of freedom, whereas estimates based on protraction and extension angles were less accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Markl, H.: Borstenfelder an den Gelenken als Schweresinnesorgane bei Ameisen und anderen Hymenopteren. Z. Vergl. Physiol. 45, 475–569 (1962)

    Article  Google Scholar 

  2. Bässler, U.: Propriorezeptoren am Subcoxal- und Femur-Tibia-Gelenk der Stabheuschrecke Carausius morosus und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung. Kybernetik 2, 168–193 (1965)

    Google Scholar 

  3. Ronacher, B., Wehner, R.: Desert ants Cataglyphis fortis use self-induced optic flow to measure distances travelled. J. Comp. Physiol. A 177, 21–27 (1995)

    Article  Google Scholar 

  4. Baird, E., Srinivasan, Mandyam V., Zhang, S., Lamont, R., Cowling, A.: Visual control of flight speed and height in the honeybee. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, John C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 40–51. Springer, Heidelberg (2006). https://doi.org/10.1007/11840541_4

    Chapter  Google Scholar 

  5. Dürr, V., Theunissen, L.M., Dallmann, C.J., Hoinville, T., Schmitz, J.: Motor flexibility in insects: Adaptive coordination of limbs in locomotion and near-range exploration. Behav. Ecol. Sociobiol. 72, 15 (2018)

    Article  Google Scholar 

  6. Theunissen, L.M., Vikram, S., Dürr, V.: Spatial co-ordination of foot contacts in unrestrained climbing insects. J. Exp. Biol. 217, 3242–3253 (2014)

    Article  Google Scholar 

  7. Wong, R.K.S., Pearson, K.G.: Properties of the trochanteral hair plate and its function in the control of walking in the cockroach. J. Exp. Biol. 64, 233–249 (1976)

    Google Scholar 

  8. Theunissen, L.M., Dürr, V.: Insects use two distinct classes of steps during unrestrained locomotion. PLoS ONE 8, e85321 (2013)

    Article  Google Scholar 

  9. Theunissen, L.M., Bekemeier, H.H., Dürr, V.: Comparative whole-body kinematics of closely related insect species with different body morphology. J. Exp. Biol. 218, 340–352 (2015)

    Article  Google Scholar 

  10. Matheson, T.: Range fractionation in the locus metathoracic femoral chordotonal organ. J. Comp. Physiol. 170, 509–520 (1992)

    Google Scholar 

  11. Hofmann, T., Koch, U.T., Bässler, U.: Physiology of the femoral chordotonal organ in the stick insect, Cuniculina impigra. J. Exp. Biol. 114, 207–223 (1985)

    Google Scholar 

  12. Laughlin, S.B.: A simple coding procedure enhances a neuron’s information capacity. Zeitschrift für Naturforschung C 36, 910–912 (1981)

    Google Scholar 

  13. Okada, J., Toh, Y.: Peripheral representation of antennal orientation by the scapal hair plate of the cockroach Periplaneta americana. J. Exp. Biol. 204, 4301–4309 (2001)

    Google Scholar 

  14. Ache, J.M., Dürr, V.: A computational model of a mechanoreceptive descending pathway involved in active tactile sensing. PLoS Comput. Biol. 11, e1004263, 1–27 (2015)

    Google Scholar 

  15. Nawrot, M.P., Boucsein, C., Rodriguez Molina, V., Riehle, A., Aertsen, A., Rotter, S.: Measurement of variability dynamics in cortical spike trains. J. Neurosci. Meth. 169, 374–390 (2008)

    Article  Google Scholar 

  16. Lewis, P.A.W., Shedler, G.S.: Simulation of nonhomogeneous poisson processes by thinning. Naval Res. Logist. 26, 403–413 (1979)

    Article  MathSciNet  Google Scholar 

  17. Schleif, F.-M., Mokbel, B., Gisbrecht, A., Theunissen, L., Dürr, V., Hammer, B.: Learning relevant time points for time-series data in the life sciences. In: Villa, Alessandro E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012. LNCS, vol. 7553, pp. 531–539. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33266-1_66

    Chapter  Google Scholar 

  18. Dallmann, C.J., Dürr, V., Schmitz, J.: Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control. Proc. R. Soc. B 283, 20151708 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Gollin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gollin, A., Dürr, V. (2018). Estimating Body Pitch from Distributed Proprioception in a Hexapod. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics