Skip to main content

Development and Characterization of a Novel Biomimetic Peristaltic Pumping System with Flexible Silicone-Based Soft Robotic Ring Actuators

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Included in the following conference series:

Abstract

In nature and technology peristaltic pumping systems can be found transporting various media in a simple and secure way. In the field of soft robotics different types of peristaltic pumping systems exist, most with rigid framing and complex actuators like pneumatic network (pneu-net) fluidic elastomer actuators or artificial muscles. The novel biomimetic peristaltic pumping system presented in this study is actuated by silicone-based, flexible, compliant, lightweight pneumatic ring actuators with an elliptical inner conduit. Single actuators as well as the whole peristaltic pumping system are characterized in terms of occlusion rate and volume flow rate. The characterization indicates that the developed flexible and elastic silicone-based peristaltic pump achieves sufficient flow rates and can be an alternative to conventional technical pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogel, S.: Living in a physical world X. Pumping fluids through conduits. J. Biosci. 32, 207–222 (2007). https://doi.org/10.1007/s12038-007-0021-4

    Article  Google Scholar 

  2. Pass, G.: Accessory pulsatile organs: evolutionary innovations in insects. Ann. Rev. Entomol. 45, 495–518 (2000). https://doi.org/10.1146/annurev.ento.45.1.495

    Article  Google Scholar 

  3. Jaffrin, M.Y., Shapiro, A.H.: Peristaltic pumping. Ann. Rev. Fluid Mech. 3, 13–37 (1971). https://doi.org/10.1146/annurev.fl.03.010171.000305

    Article  Google Scholar 

  4. Bach, D., Schmich, F., Masselter, T., Speck, T.: A review of selected pumping systems in nature and engineering - potential biomimetic concepts for improving displacement pumps and pulsation damping. Bioinspir. Biomimetics 10, 051001 (2015). https://doi.org/10.1088/1748-3190/10/5/051001

    Article  Google Scholar 

  5. Krutzsch, W.C., Cooper, P.: Introduction: classification and selection of pumps. In: Karassik, I.J., Cooper, P., Messina, J.P., Heald, C.C. (eds) Pump Handbook, 4th edn. vol. 1, pp. 2–7. Mc Graw Hill (2008). https://doi.org/10.1002/aic.690220632

  6. Pierburg Pump Technology GmbH: Water circulation pump – compact and versatile. Rheinmetall Automotive AG (2018). http://www.kspg.com

  7. Esser, F., Bach, D., Masselter, T., Speck, T.: Nature as concept generator for novel biomimetic pumping systems. In: Bionik: Patente aus der Natur, Tagungsbeiträge zum 8. Bionik-Kongress in Bremen, vol. 8, pp. 116–122 (2017). ISBN 978-3-00-055030-0

    Google Scholar 

  8. Esser, F., Steger, T., Bach, D., Masselter, T., Speck, T.: Development of novel foam-based soft robotic ring actuators for a biomimetic peristaltic pumping system. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, Paul F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 138–147. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_12

    Chapter  Google Scholar 

  9. Chen, F.J., Dirven, S., Xu, W.L., Bronlund, J., Li, X.N., Pullan, A.: Review of the swallowing system and process for a biologically mimicking swallowing robot. Mechatronics 22, 556–567 (2012). https://doi.org/10.1016/j.mechatronics.2012.02.005

    Article  Google Scholar 

  10. Walsh, J.H., Leigh, M.S., Paduch, A., Maddison, K.J., Philippe, D.L., Armstrong, J.J., Sampson, D.D., Hillman, D.R., Eastwood, P.R.: Evaluation of pharyngeal shape and size using anatomical optical coherence tomography in individuals with and without obstructive sleep apnoea. J. Sleep Res. 17, 230–238 (2008). https://doi.org/10.1111/j.1365-2869.2008.00647.x

    Article  Google Scholar 

  11. Brasseur, J.G.: A fluid mechanical perspective on esophageal bolus transport. Dysphagia 2, 32–39 (1987). https://doi.org/10.1007/BF02406976

    Article  Google Scholar 

  12. Dirven, S., Xu, W., Cheng, L.K., Allen, J., Bronlund, J.: Biologically-inspired swallowing robot for investigation of texture modified foods. Int. J. Biomechatron. Biomed. Robot. 2, 163–171 (2013). https://doi.org/10.1504/IJBBR.2013.058719

    Article  Google Scholar 

  13. Chen, F.-J., Dirven, S., Xu, W., Li, X.-N., Bronlund, J.: Design and fabrication of a soft actuator for a swallowing robot. In: Kim, J.-H., Matson, E.T., Myung, H., Xu, P., Karray, F. (eds.) Robot Intelligence Technology and Applications 2. AISC, vol. 274, pp. 483–493. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05582-4_42

    Chapter  Google Scholar 

  14. Dirven, S., Xu, W., Cheng, L.K.: Sinusoidal peristaltic waves in soft actuator for mimicry of esophageal swallowing. IEEE/ASME Trans. Mechatron. 20, 1331–1337 (2015). https://doi.org/10.1109/TMECH.2014.2337291

    Article  Google Scholar 

  15. Chen, F., Dirven, S., Xu, W., Li, X.: Large-deformation model of a soft-bodied esophageal actuator driven by distributed air pressure. IEEE/ASME Trans. Mechatron. 22, 81–90 (2016). https://doi.org/10.1109/TMECH.2016.2612262

    Article  Google Scholar 

  16. Zhu, M., Xu, W., Cheng, L.K.: Measuring and imaging of a soft-bodied swallowing robot conduit deformation and internal structural change using videofluoroscopy. In: 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–6 (2016). https://doi.org/10.1109/m2vip.2016.7827312

  17. Zhu, M., Xu, W., Cheng, L.K.: Esophageal peristaltic control of a soft-bodied swallowing robot by the central pattern generator. IEEE/ASME Trans. Mechatron. 22, 91–98 (2016). https://doi.org/10.1109/TMECH.2016.2609465

    Article  Google Scholar 

  18. Dirven, S., Allen, J., Xu, W., Cheng, L.K.: Soft-robotic esophageal swallowing as a clinically-inspired bolus rheometry technique. Meas. Sci. Technol. 28, 035701 (2017). https://doi.org/10.1088/1361-6501/aa544f

    Article  Google Scholar 

  19. Suzuki, K., Nakamura, T.: Development of a peristaltic pump based on bowel peristalsis using for artificial rubber muscle. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3085–3090 (2010). https://doi.org/10.1109/iros.2010.5653006

  20. Kimura, Y., Saito, K., Nakamura, T.: Development of an exsufflation system for peristaltic pump based on bowel peristalsis. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 235–1240 (2013). https://doi.org/10.1109/aim.2013.6584263

  21. Yoshihama, S., Takano, S., Yamada, Y., Nakamura, T., Kato, K.: Powder conveyance experiments with peristaltic conveyor using a pneumatic artificial muscle. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 539–1544 (2016). https://doi.org/10.1109/aim.2016.7576989

  22. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. 123, 1930–1935 (2011). https://doi.org/10.1002/ange.201006464

    Article  Google Scholar 

  23. Smooth-on safety data sheets. https://www.smooth-on.com

  24. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). https://doi.org/10.1038/nmeth.2019

    Article  Google Scholar 

  25. R Core Team.: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2017). https://www.R-project.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk Esser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esser, F., Krüger, F., Masselter, T., Speck, T. (2018). Development and Characterization of a Novel Biomimetic Peristaltic Pumping System with Flexible Silicone-Based Soft Robotic Ring Actuators. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics