Skip to main content

Optimization Method of Residual Networks of Residual Networks for Image Classification

  • Conference paper
  • First Online:
Book cover Intelligent Computing Methodologies (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10956))

Included in the following conference series:

  • 2470 Accesses

Abstract

The activation of a Deep Convolutional Neural Network that overlooks the diversity of datasets has been restricting its development in image classification. In this paper, we propose a Residual Networks of Residual Networks (RoR) optimization method. Firstly, three activation functions (RELU, ELU and PELU) are applied to RoR and can provide more effective optimization methods for different datasets; Secondly, we added a drop-path to avoid over-fitting and widened RoR adding filters to avoid gradient vanish. Our networks achieved good classification accuracy in CIFAR-10/100 datasets, and the best test errors were 3.52% and 19.07% on CIFAR-10/100, respectively. The experiments prove that the RoR network optimization method can improve network performance, and effectively restrain the vanishing/exploding gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  2. Hong, C., Yu, J., Wan, J., et al.: Multimodal deep autoencoder for human pose recovery. IEEE Trans. Image Process. 24(12), 5659–5670 (2015)

    Article  MathSciNet  Google Scholar 

  3. Hong, C., Yu, J., Tao, D., et al.: Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval. IEEE Trans. Industr. Electron. 62(6), 3742–3751 (2015)

    Google Scholar 

  4. Krizhenvshky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  5. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large scale visual recognition challenge, arXiv preprint arXiv:1409.0575 (2014)

  6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556 (2014)

  7. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-houcke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, arXiv preprint arXiv:1512.03385 (2015)

  9. He, K., Zhang, X., Ren, S., Sun, J.: Identity mapping in deep residual networks, arXiv preprint arXiv:1603.05027 (2016)

  10. Huang, G., Sun, Y., Liu, Z., Weinberger, K.: Deep networks with stochastic depth, arXiv preprint arXiv:1605.09382 (2016)

    Chapter  Google Scholar 

  11. Zagoruyko, S., Komodakis, N.: Wide residual networks, arXiv preprint arXiv:1605.07146 (2016)

  12. Krizhenvshky, A., Hinton, G.: Learning multiple layers of features from tiny images. M.Sc. thesis, Dept. of Comput. Sci., Univ. of Toronto, Toronto, ON, Canada (2009)

    Google Scholar 

  13. Zhang, K., Sun, M., Han, X., et al.: Residual networks of residual networks: multilevel residual networks. IEEE Trans. Circuits Syst. Video Technol. PP(99), 1 (2016)

    Google Scholar 

  14. Huang, G., Liu, Z., Weinberger, K.Q., et al.: Densely connected convolutional networks, arXiv preprint arXiv:1608.06993 (2016)

  15. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (2014)

    Article  Google Scholar 

  16. Nair, V., Hinton, G.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the ICML, pp. 807–814 (2010)

    Google Scholar 

  17. Clevert, D.-A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus), arXiv preprint arXiv:1511.07289 (2015)

  18. Trottier, L., Giguere, P., Chaibdraa, B.: Parametric exponential linear unit for deep convolutional neural networks, arXiv preprint arXiv:1605.09322 (2016)

  19. Mishkin, D., Matas, J.: All you need is a good init, arXiv preprint arXiv:1511.06422 (2015)

  20. Larsson, G., Maire, M., Shakhnarovich, G.: FractalNet: ultra-deep neural networks without residuals, arXiv preprint arXiv:1605.07648 (2016)

  21. Shah, A., Shinde, S., Kadam, E., Shah, H.: Deep residual networks with exponential linear unit, arXiv preprint arXiv:1604.04112 (2016)

  22. Shen, F., Zeng, G.: Weighted residuals for very deep networks, arXiv preprint arXiv:1605.08831 (2016)

  23. Moniz, J., Pal, C.: Convolutional residual memory networks, arXiv preprint arXiv:1606.05262 (2016)

  24. Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: generalizing residual architectures, arXiv preprint arXiv:1603.08029 (2016)

  25. Abdi, M., Nahavandi, S., Multi-residual networks, arXiv preprint arXiv:1609.05672 (2016)

  26. Xie, S., Girshick, R., Dollr, P., et al.: Aggregated residual transformations for deep neural networks, arXiv preprint arXiv:1611.05431 (2016)

  27. Han, D., Kim, J., Kim, J.: Deep pyramidal residual networks, arXiv preprint arXiv:1610.02915 (2016)

Download references

Acknowledgement

This work is supported by National Power Grid Corp Headquarters Science and Technology Project under Grant No. 5455HJ170002(Video and Image Processing Based on Artificial Intelligence and its Application in Inspection), National Natural Science Foundation of China under Grants No. 61302163, No. 61302105, No. 61401154 and No. 61501185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, L., Yuan, H., Guo, L., Kuang, Y., Zhang, K. (2018). Optimization Method of Residual Networks of Residual Networks for Image Classification. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95957-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95956-6

  • Online ISBN: 978-3-319-95957-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics