Skip to main content

Mini-bioreactors as Tools for Adaptive Laboratory Evolution for Antibiotic Drug Resistance and Evolutionary Tuning of Bacterial Optogenetic Circuits

  • Chapter
  • First Online:
Origin and Evolution of Biodiversity
  • 1251 Accesses

Abstract

Adaptive laboratory evolution for microbial cells has become an indispensable tool for metabolic engineering and system and synthetic biology. Commercial bioreactors, however, are cumbersome to use and difficult to meet special needs for adaptive laboratory evolution, and there has been the recent renaissance of mini-bioreactor of working volume in the milliliter range. Leveraging on availability of low-cost electronic components such as light-emitting diode and microcontroller board, we have developed a low-cost, flexible, and robust bioreactor platform. We detail two examples of our design, namely the morbidostat and optogenetic bioreactors for antibiotic drug resistance study and optically controlled evolution, respectively. These mini-bioreactors will be useful tools for adaptive laboratory evolution for microbial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonovsky N et al (2016) Sugar synthesis from CO2 in Escherichia coli. Cell 166:115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baden T, Chagas A, Gage G, Marzullo T, Prieto Godino L, Euler T (2015) Open labware-3D printing your own lab equipment. PLoS Biol 13:e1002175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baym M, Lieberman TD, Kelsic ED, Chait R, Gross R, Yelin I, Kishony R (2016) Spatiotemporal microbial evolution on antibiotic landscapes. Science 353:1147–1151

    PubMed  CAS  Google Scholar 

  • Chen Z, Hsu SB, Yang YT (2017) The morbidostat: a bioreactor that promotes selection for drug resistance in bacteria. SIAM J Appl Math 77(2):470–490

    Article  Google Scholar 

  • Davidson EA, Basu AS, Bayer TS (2013) Programming microbes using pulse width modulation of optical signals. J Mol Biol 425:4161–4166

    Article  CAS  PubMed  Google Scholar 

  • Dekel E, Alon U (2005) Optimality and evolutionary tuning of the expression level of a protein. Nature 436:588–592

    Article  CAS  PubMed  Google Scholar 

  • Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution—principles and applications for biotechnology. Microbial Cell Fact 12:64

    Article  Google Scholar 

  • Fernandez-Rodriguez J, Moser F, Song M, Voigt CA (2017) Engineering RGB color vision into Escherichia coli. Nat Chem Biol 13:706–710

    Article  CAS  PubMed  Google Scholar 

  • Flensburg J, Skold O (1987) Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur J Biochem 162:473–476


    Google Scholar 

  • Gerhardt KP et al (2016) An open-hardware platform for optogenetics and photobiology. Sci Rep. https://doi.org/10.1038/srep35363

  • Heikkila E, Sundstrom L, Huovinen P (1990) Trimethoprim resistance in Escherichia coli isolates from a geriatric unit. Antimicrob Agents Chemother 34:2013–2015


    Google Scholar 

  • Lenski RE (2017) Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J 11:2181–2194

    Article  CAS  PubMed  Google Scholar 

  • Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Voigt CA (2005) Synthetic biology: engineering Escherichia coli to see light. Nature 438:441–442

    Article  CAS  PubMed  Google Scholar 

  • Liu PC, Lee YT, Wang CY, Yang YT (2016) Design and use of a low cost, automated morbidostat for adaptive evolution of bacteria under antibiotic drug selection. J Vis Exp 115. https://doi.org/10.3791/54426

  • Novick A, Szilard L (1950) Description of the chemostat. Science 112:715–716

    Article  CAS  PubMed  Google Scholar 

  • Ohmae E, Sasaki Y, Gekko K (2001) Effects of five-tryptophan mutations on structure, stability and function of Escherichia coli dihydrofolate reductase. J Biochem 130:439–447


    Google Scholar 

  • Ohlendorf R, Vidavski RR, Eldar A, Moffat K, Möglich A (2012) From dusk till dawn: one-plasmid systems for light- regulated gene expression. J Mol Biol 416:534–542

    Article  CAS  PubMed  Google Scholar 

  • Olson EJ, Hartsough LA, Landry BP, Shroff R, Tabor JJ (2014) Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals. Nat Methods 11:449–455

    Article  CAS  PubMed  Google Scholar 

  • Palmer AC, Toprak E, Baym MHS, Kim S, Veres A, Bershtein SR, Kishony SR (2015) Delayed commitment to evolutionary fate in antibiotic resistance fitness landscapes. Nat Commun 6:7385. https://doi.org/10.1038/ncomms8385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryu MH, Gomelsky M (2014) Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. ACS Synth Biol 3:802–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan P, Tabor JJ (2016) Repurposing Synechocystis PCC6803 UirS−UirR as a UV-Violet/Green photoreversible transcriptional regulatory tool in E. coli. ACS Synth Biol 5:733–740

    Article  CAS  PubMed  Google Scholar 

  • Schmidl SR, Sheth RU, Wu A, Tabor JJ (2014) Refactoring and optimization of light-switchable Escherichia coli two-component systems. ACS Synth Biol 3:820–831

    Article  CAS  PubMed  Google Scholar 

  • Sklodowska K, Jakiela S (2017) Enhancement of bacterial growth with the help of immiscible oxygenated oils. RSC Adv 7:40990

    Article  CAS  Google Scholar 

  • Takahashi CN, Miller AW, Ekness F, Dunham MJ, Klavins E (2014) A low cost, customizable turbidostat for use in synthetic circuit characterization. ACS Synth Biol 4:32–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R (2012) Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet 44:101–106

    Article  CAS  Google Scholar 

  • Toprak E, Veres A, Yildiz S, Pedraza JM, Chait R, Paulsson J, Kishony R (2013) Building a morbidostat: an automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition. Nat Protoc 8:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HK, Yang YT (2017) Mini photobioreactors for in vivo real-time characterization and evolutionary tuning of bacterial optogenetic circuit. ACS Synth Biol. https://doi.org/10.1021/acssynbio.7b00091

Download references

Acknowledgements

The author thanks Dr. Teuta Pilizota’s laboratory at the University of Edinburgh, Han-Jia Lin’s laboratory at the National Ocean University, and Prof. Charles Carter’s laboratory at the University of Carolina at Chapel Hill for their becoming early adopters as well as for their input on our design and assembly instructions. The author would like to acknowledge funding support from the Ministry of Science and Technology under grant numbers MOST 105-2221-E-007-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Tang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, YT. (2018). Mini-bioreactors as Tools for Adaptive Laboratory Evolution for Antibiotic Drug Resistance and Evolutionary Tuning of Bacterial Optogenetic Circuits. In: Pontarotti, P. (eds) Origin and Evolution of Biodiversity. Springer, Cham. https://doi.org/10.1007/978-3-319-95954-2_5

Download citation

Publish with us

Policies and ethics