Skip to main content

Role of Computational Modeling for Dose Determination

  • Chapter
  • First Online:
Book cover Practical Guide to Transcranial Direct Current Stimulation

Abstract

This chapter provides a broad introduction to computational models that inform and optimize tDCS for both clinical researchers and translational engineers. The first section introduces the rationale for modeling; the next two sections address technical features of modeling relevant to engineers (and to clinicians interested in the limitations of modeling); the following three sections address the use of modeling in clinical practice, and the final section illustrates the application of models in dose design through case studies. Computational “forward” models predict the flow of current throughout the head during tDCS, as with other brain stimulation techniques. Because the relationship between stimulation dose (defined as those electrode and waveform parameters controlled by the operator) and resulting brain current flow is complex and non-intuitive, computational forward models are essential to the rational design of stimulation protocols. Though model validation efforts are ongoing, these models already represent a standard tool to predict brain current flow and optimize tDCS dose, and so inform clinical practice and behavior research. Yet despite increased interest in tDCS modeling, as supported by the number of tDCS publications about or including a modeling component, access to modeling tools by clinicians remains highly limited. Ironically, much of the effort to enhance the relevance of modeling through increased sophistication (complexity) in fact hinders both reproduction and dissemination. This chapter therefore addresses not only the state-of-the-art in modeling techniques, but also how models can be immediately leveraged by researchers and clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amassian, V. E., Eberle, L., Maccabee, P. J., & Cracco, R. Q. (1992). Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: The significance of fiber bending in excitation. Electroencephalography and Clinical Neurophysiology, 85(5), 291–301.

    Article  CAS  PubMed  Google Scholar 

  • Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J. M., Dongarra, J., … Van der Vorst, H. (1993). Templates for the solution of linear systems: Building blocks for iterative methods (2nd ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Bashir, U., Mallia, A., Stirling, J., Joemon, J., MacKewn, J., Charles-Edwards, G., … Cook, G. J. (2015). PET/MRI in oncological imaging: State of the art. Diagnostica, 5(3), 333–357.

    Article  CAS  Google Scholar 

  • Bikson, M., Datta, A., Rahman, A., & Scaturro, J. (2010). Electrode montages for tDCS and weak transcranial electrical stimulation: Role of “return” electrode's position and size. Clinical Neurophysiology, 121(12), 1976–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bikson, M., Dmochowski, J., & Rahman, A. (2013). The “quasi-uniform” assumption in animal and computational models of non-invasive electrical stimulation. Brain Stimulation, 6(4), 704–705.

    Article  PubMed  Google Scholar 

  • Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., … Woods, A. J. (2016). Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimulation, 9(5), 641–661.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., & Jefferys, J. G. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. The Journal of Physiology, 557.(Pt 1, 175–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortoletto, M., Rodella, C., Salvador, R., Miranda, P. C., & Miniussi, C. (2016). Reduced current spread by concentric electrodes in transcranial electrical stimulation (tES). Brain Stimulation, 9(4), 525–528.

    Article  CAS  PubMed  Google Scholar 

  • Brunelin, J., Mondino, M., Gassab, L., Haesebaert, F., Gaha, L., Suaud-Chagny, M. F., … Poulet, E. (2012). Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. The American Journal of Psychiatry, 169(7), 719–724.

    Article  PubMed  Google Scholar 

  • Brunoni, A. R., Shiozawa, P., Truong, D., Javitt, D. C., Elkis, H., Fregni, F., … Bikson, M. (2014). Understanding tDCS effects in schizophrenia: A systematic review of clinical data and an integrated computation modeling analysis. Expert Review of Medical Devices, 11(4), 383–394.

    Article  CAS  PubMed  Google Scholar 

  • Dasilva, A. F., Mendonca, M. E., Zaghi, S., Lopes, M., Dossantos, M. F., Spierings, E. L., … Fregni, F. (2012). tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache, 52(8), 1283–1295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Datta, A., Baker, J. M., Bikson, M., & Fridriksson, J. (2011). Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimulation, 4(3), 6.

    Article  Google Scholar 

  • Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009a). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201–207.

    Article  Google Scholar 

  • Datta, A., Bikson, M., & Fregni, F. (2010). Transcranial direct current stimulation in patients with skull defects and skull plates: High-resolution computational FEM study of factors altering cortical current flow. NeuroImage, 52(4), 1268–1278.

    Article  PubMed  Google Scholar 

  • Datta, A., Elwassif, M., Battaglia, F., & Bikson, M. (2008). Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. Journal of Neural Engineering, 5(2), 163–174.

    Article  PubMed  Google Scholar 

  • Datta, A., Elwassif, M., & Bikson, M. (2009b). Bio-heat transfer model of transcranial DC stimulation: Comparison of conventional pad versus ring electrode. Paper presented at the 31st annual international conference of the IEEE engineering in medicine and biology society (EMBC), Minneapolis.

    Google Scholar 

  • Datta, A., Krause, M. R., Pilly, P. K., Choe, J., Zanos, T. P., Thomas, C., & Pack, C. C. (2016). On comparing in vivo intracranial recordings in non-human primates to predictions of optimized transcranial electrical stimulation. Paper presented at the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando.

    Google Scholar 

  • Datta, A., Truong, D., Minhas, P., Parra, L. C., & Bikson, M. (2012). Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Frontiers in Psychiatry, 3, 91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dmochowski, J. P., Datta, A., Bikson, M., Su, Y. Z., & Parra, L. C. (2011). Optimized multi-electrode stimulation increases focality and intensity at target. Journal of Neural Engineering, 8(4), 046011.

    Article  PubMed  Google Scholar 

  • Dmochowski, J. P., Datta, A., Huang, Y., Richardson, J. D., Bikson, M., Fridriksson, J., & Parra, L. C. (2013). Targeted transcranial direct current stimulation for rehabilitation after stroke. NeuroImage, 75, 12–19.

    Article  PubMed  Google Scholar 

  • Dymond, A. M., Coger, R. W., & Serafetinides, E. A. (1975). Intracerebral current levels in man during electrosleep therapy. Biological Psychiatry, 10(1), 101–104.

    CAS  PubMed  Google Scholar 

  • Eaton, H. (1992). Electric field induced in a spherical volume conductor from arbitrary coils: Application to magnetic stimulation and MEG. Medical & Biological Engineering & Computing, 30(4), 433–440.

    Article  CAS  Google Scholar 

  • Faria, P., Hallett, M., & Miranda, P. C. (2011). A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. Journal of Neural Engineering, 8(6), 066017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferdjallah, M., Bostick, F. X., Jr., & Barr, R. E. (1996). Potential and current density distributions of cranial electrotherapy stimulation (CES) in a four-concentric-spheres model. IEEE Transactions on Biomedical Engineering, 43(9), 939–943.

    Article  CAS  PubMed  Google Scholar 

  • Gabriel, C., Gabriel, S., & Corthout, E. (1996). The dielectric properties of biological tissues: I. Literature survey. Physics in Medicine and Biology, 41(11), 2231–2249.

    Article  CAS  PubMed  Google Scholar 

  • Galletta, E. E., Cancelli, A., Cottone, C., Simonelli, I., Tecchio, F., Bikson, M., & Marangolo, P. (2015). Use of computational modeling to inform tDCS electrode montages for the promotion of language recovery in post-stroke aphasia. Brain Stimulation, 8(6), 1108–1115.

    Article  PubMed  Google Scholar 

  • Gillick, B. T., Kirton, A., Carmel, J. B., Minhas, P., & Bikson, M. (2014). Pediatric stroke and transcranial direct current stimulation: Methods for rational individualized dose optimization. Frontiers in Human Neuroscience, 8, 739.

    Article  PubMed  PubMed Central  Google Scholar 

  • Halko, M. A., Datta, A., Plow, E. B., Scaturro, J., Bikson, M., & Merabet, L. B. (2011). Neuroplastic changes following rehabilitative training correlate with regional electrical field induced with tDCS. NeuroImage, 57(3), 885–891.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., & Parra, L. C. (2015). Fully automated whole-head segmentation with improved smoothness and continuity, with theory reviewed. PLoS One, 10(5), e0125477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang, Y., Parra, L. C., & Haufe, S. (2016). The New York head-a precise standardized volume conductor model for EEG source localization and tES targeting. NeuroImage, 140, 150–162.

    Article  PubMed  Google Scholar 

  • Indahlastari, A., & Sadleir, R. J. (2015). A comparison between block and smooth modeling in finite element simulations of tDCS. Paper presented at the 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Milan.

    Google Scholar 

  • Johnson, C. R. (1997). Computational and numerical methods for bioelectric field problems. Critical Reviews in Biomedical Engineering, 25(1), 1–81.

    Article  CAS  PubMed  Google Scholar 

  • Jung, Y.-J., Kim, J.-H., & Im, C.-H. (2013). COMETS: A MATLAB toolbox for simulating local electric fields generated by transcranial direct current stimulation (tDCS). [journal article]. Biomedical Engineering Letters, 3(1), 39–46.

    Article  Google Scholar 

  • Kessler, S. K., Minhas, P., Woods, A. J., Rosen, A., Gorman, C., & Bikson, M. (2013). Dosage considerations for transcranial direct current stimulation in children: A computational modeling study. PLoS One, 8(9), e76112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laakso, I., Tanaka, S., Koyama, S., De Santis, V., & Hirata, A. (2015). Inter-subject variability in electric fields of motor cortical tDCS. Brain Stimulation, 8(5), 8.

    Article  Google Scholar 

  • Liebetanz, D., Koch, R., Mayenfels, S., Konig, F., Paulus, W., & Nitsche, M. A. (2009). Safety limits of cathodal transcranial direct current stimulation in rats. Clinical Neurophysiology, 120(6), 1161–1167.

    Article  PubMed  Google Scholar 

  • Lopez-Alonso, V., Cheeran, B., Rio-Rodriguez, D., & Fernandez-Del-Olmo, M. (2014). Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimulation, 7(3), 372–380.

    Article  PubMed  Google Scholar 

  • Mendonca, M. E., Santana, M. B., Baptista, A. F., Datta, A., Bikson, M., Fregni, F., & Araujo, C. P. (2011). Transcranial DC stimulation in fibromyalgia: Optimized cortical target supported by high-resolution computational models. The Journal of Pain, 12(5), 610–617.

    Article  PubMed  Google Scholar 

  • Merlet, I., Birot, G., Salvador, R., Molaee-Ardekani, B., Mekonnen, A., Soria-Frisch, A., … Wendling, F. (2013). From oscillatory transcranial current stimulation to scalp EEG changes: A biophysical and physiological modeling study. PLoS One, 8(2), e57330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metwally, M. K., Han, S. M., & Kim, T. S. (2015). The effect of tissue anisotropy on the radial and tangential components of the electric field in transcranial direct current stimulation. Medical & Biological Engineering & Computing, 53(10), 1085–1101.

    Article  Google Scholar 

  • Minhas, P., Bikson, M., Woods, A. J., Rosen, A. R., & Kessler, S. K. (2012). Transcranial direct current stimulation in pediatric brain: A computational modeling study. Paper presented at the 34th annual international conference of the IEEE engineering in medicine and biology society (EMBC), San Diego.

    Google Scholar 

  • Miranda, P. C., Correia, L., Salvador, R., & Basser, P. J. (2007). Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields. Physics in Medicine and Biology, 52(18), 5603–5617.

    Article  CAS  PubMed  Google Scholar 

  • Miranda, P. C., Hallett, M., & Basser, P. J. (2003). The electric field induced in the brain by magnetic stimulation: A 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Transactions on Biomedical Engineering, 50(9), 1074–1085.

    Article  PubMed  Google Scholar 

  • Miranda, P. C., Lomarev, M., & Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clinical Neurophysiology, 117(7), 1623–1629.

    Article  PubMed  Google Scholar 

  • Miranda, P. C., Mekonnen, A., Salvador, R., & Ruffini, G. (2013). The electric field in the cortex during transcranial current stimulation. NeuroImage, 70, 48–58.

    Article  PubMed  Google Scholar 

  • Moliadze, V., Antal, A., & Paulus, W. (2010). Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clinical Neurophysiology, 121(12), 2165–2171.

    Article  PubMed  Google Scholar 

  • Nagarajan, S. S., Durand, D. M., & Warman, E. N. (1993). Effects of induced electric-fields on finite neuronal structures – A simulation study. IEEE Transactions on Biomedical Engineering, 40(11), 1175–1188.

    Article  CAS  PubMed  Google Scholar 

  • Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology London, 527(3), 633–639.

    Article  CAS  Google Scholar 

  • Oostendorp, T. F., Hengeveld, Y. A., Wolters, C. H., Stinstra, J., van Elswijk, G., & Stegeman, D. F. (2008). Modeling transcranial DC stimulation. Paper presented at the 30th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Vancouver.

    Google Scholar 

  • Opitz, A., Falchier, A., Yan, C. G., Yeagle, E. M., Linn, G. S., Megevand, P., … Schroeder, C. E. (2016). Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Scientific Reports, 6, 31236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opitz, A., Paulus, W., Will, S., Antunes, A., & Thielscher, A. (2015). Determinants of the electric field during transcranial direct current stimulation. NeuroImage, 109, 140–150.

    Article  PubMed  Google Scholar 

  • Parazzini, M., Fiocchi, S., Cancelli, A., Cottone, C., Liorni, I., Ravazzani, P., & Tecchio, F. (2016). A computational model of the electric field distribution due to regional personalized or non-personalized electrodes to select transcranial electric stimulation target. IEEE Transactions on Biomedical Engineering, 64, 184–195.

    Article  PubMed  Google Scholar 

  • Parazzini, M., Fiocchi, S., Liorni, I., Priori, A., & Ravazzani, P. (2014a). Computational modeling of transcranial direct current stimulation in the child brain: Implications for the treatment of refractory childhood focal epilepsy. International Journal of Neural Systems, 24(2), 1430006.

    Article  PubMed  Google Scholar 

  • Parazzini, M., Fiocchi, S., & Ravazzani, P. (2012). Electric field and current density distribution in an anatomical head model during transcranial direct current stimulation for tinnitus treatment. Bioelectromagnetics, 33(6), 476–487.

    Article  PubMed  Google Scholar 

  • Parazzini, M., Fiocchi, S., Rossi, E., Paglialonga, A., & Ravazzani, P. (2011). Transcranial direct current stimulation: Estimation of the electric field and of the current density in an anatomical human head model. IEEE Transactions on Biomedical Engineering, 58(6), 1773–1780.

    Article  PubMed  Google Scholar 

  • Parazzini, M., Rossi, E., Ferrucci, R., Liorni, I., Priori, A., & Ravazzani, P. (2014b). Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clinical Neurophysiology, 125(3), 577–584.

    Article  PubMed  Google Scholar 

  • Parazzini, M., Rossi, E., Rossi, L., Priori, A., & Ravazzani, P. (2013a). Evaluation of the current density in the brainstem during transcranial direct current stimulation with extra-cephalic reference electrode. Clinical Neurophysiology, 124(5), 1039–1040.

    Article  CAS  PubMed  Google Scholar 

  • Parazzini, M., Rossi, E., Rossi, L., Priori, A., & Ravazzani, P. (2013b). Numerical estimation of the current density in the heart during transcranial direct current stimulation. Brain Stimulation, 6(3), 457–459.

    Article  PubMed  Google Scholar 

  • Peterchev, A. V., Wagner, T. A., Miranda, P. C., Nitsche, M. A., Paulus, W., Lisanby, S. H., … Bikson, M. (2012). Fundamentals of transcranial electric and magnetic stimulation dose: Definition, selection, and reporting practices. Brain Stimulation, 5(4), 435–453.

    Article  PubMed  Google Scholar 

  • Radman, T., Ramos, R. L., Brumberg, J. C., & Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation, 2(4), 215–228.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L. C., & Bikson, M. (2013). Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. Journal of Physiology London, 591(10), 2563–2578.

    Article  CAS  Google Scholar 

  • Rampersad, S., Stegeman, D., & Oostendorp, T. (2012). Single-layer skull approximations perform well in transcranial direct current stimulation modeling. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 1(3), 8.

    Google Scholar 

  • Rampersad, S. M., Janssen, A. M., Lucka, F., Aydin, U., Lanfer, B., Lew, S., … Oostendorp, T. F. (2014). Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(3), 441–452.

    Article  PubMed  Google Scholar 

  • Rattay, F. (1986). Analysis of models for external stimulation of axons. IEEE Transactions on Biomedical Engineering, 33(10), 974–977.

    Article  CAS  PubMed  Google Scholar 

  • Roth, B. J. (1994). Mechanisms for electrical-stimulation of excitable tissue. Critical Reviews in Biomedical Engineering, 22(3–4), 253–305.

    CAS  PubMed  Google Scholar 

  • Roth, B. J., Cohen, L. G., & Hallett, M. (1991). The electric field induced during magnetic stimulation. Electroencephalography and Clinical Neurophysiology, 43, 268–278.

    CAS  Google Scholar 

  • Ruffini, G., Fox, M. D., Ripolles, O., Miranda, P. C., & Pascual-Leone, A. (2014). Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. NeuroImage, 89, 216–225.

    Article  PubMed  Google Scholar 

  • Ruohonen, J. (1998). Transcranial magnetic stimulation: Modelling and new techniques. Unpublished PhD, Helsinki University of Technology, Espoo.

    Google Scholar 

  • Rush, S., & Driscoll, D. A. (1968). Current distribution in the brain from surface electrodes. Anesthesia and Analgesia, 47(6), 717–723.

    Article  CAS  PubMed  Google Scholar 

  • Sadleir, R. J., Vannorsdall, T. D., Schretlen, D. J., & Gordon, B. (2010). Transcranial direct current stimulation (tDCS) in a realistic head model. NeuroImage, 51(4), 1310–1318.

    Article  PubMed  Google Scholar 

  • Sadleir, R. J., Vannorsdall, T. D., Schretlen, D. J., & Gordon, B. (2012). Target optimization in transcranial direct current stimulation. Frontiers in Psychiatry, 3, 90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvador, R., Silva, S., Basser, P. J., & Miranda, P. C. (2011). Determining which mechanisms lead to activation in the motor cortex: A modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry. Clinical Neurophysiology, 122(4), 748–758.

    Article  CAS  PubMed  Google Scholar 

  • Salvador, R., Wenger, C., & Miranda, P. C. (2015). Investigating the cortical regions involved in MEP modulation in tDCS. [original research]. Frontiers in Cellular Neuroscience, 9: 405 (11 pages).

    Google Scholar 

  • Saturnino, G. B., Antunes, A., & Thielscher, A. (2015). On the importance of electrode parameters for shaping electric field patterns generated by tDCS. NeuroImage, 120, 25–35.

    Article  PubMed  Google Scholar 

  • Schmidt, C., Wagner, S., Burger, M., Rienen, U., & Wolters, C. H. (2015). Impact of uncertain head tissue conductivity in the optimization of transcranial direct current stimulation for an auditory target. Journal of Neural Engineering, 12(4), 046028.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahid, S., Wen, P., & Ahfock, T. (2013). Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS. Computer Methods and Programs in Biomedicine, 109(1), 48–64.

    Article  PubMed  Google Scholar 

  • Shahid, S. S., Bikson, M., Salman, H., Wen, P., & Ahfock, T. (2014). The value and cost of complexity in predictive modelling: Role of tissue anisotropic conductivity and fibre tracts in neuromodulation. Journal of Neural Engineering, 11(3), 036002.

    Article  PubMed  Google Scholar 

  • Shiozawa, P., da Silva, M. E., Cordeiro, Q., Fregni, F., & Brunoni, A. R. (2013). Transcranial direct current stimulation (tDCS) for the treatment of persistent visual and auditory hallucinations in schizophrenia: A case study. Brain Stimulation, 6(5), 831–833.

    Article  PubMed  Google Scholar 

  • Suh, H. S., Kim, S. H., Lee, W. H., & Kim, T. S. (2009). Realistic simulation of transcranial direct current stimulation via 3-D high-resolution finite element analysis: Effect of tissue anisotropy. Paper presented at the 29th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Minneapolis.

    Google Scholar 

  • Suh, H. S., Lee, W. H., & Kim, T. S. (2012). Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model. Physics in Medicine and Biology, 57(21), 6961–6980.

    Article  PubMed  Google Scholar 

  • Thielscher, A., Antunes, A., & Saturnino, G. B. (2015). Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2015, 222–225.

    Google Scholar 

  • Tofts, P. S. (1990). The distribution of induced currents in magnetic stimulation of the nervous-system. Physics in Medicine and Biology, 35(8), 1119–1128.

    Article  CAS  PubMed  Google Scholar 

  • Truong, D. Q., Huber, M., Xie, X., Datta, A., Rahman, A., Parra, L. C., … Bikson, M. (2014). Clinician accessible tools for GUI computational models of transcranial electrical stimulation: BONSAI and SPHERES. Brain Stimulation, 7(4), 521–524.

    Article  PubMed  PubMed Central  Google Scholar 

  • Truong, D. Q., Magerowski, G., Blackburn, G. L., Bikson, M., & Alonso-Alonso, M. (2013). Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines. NeuroImage Clinical, 2, 759–766.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turkeltaub, P. E., Benson, J., Hamilton, R. H., Datta, A., Bikson, M., & Coslett, H. B. (2012). Left lateralizing transcranial direct current stimulation improves reading efficiency. Brain Stimulation, 5(3), 201–207.

    Article  PubMed  Google Scholar 

  • Wagner, T., Eden, U., Rushmore, J., Russo, C. J., Dipietro, L., Fregni, F., … Valero-Cabré, A. (2014a). Impact of brain tissue filtering on neurostimulation fields: A modeling study. NeuroImage, 85(Pt 3), 1048–1057.

    Article  PubMed  Google Scholar 

  • Wagner, T., Fregni, F., Fecteau, S., Grodzinsky, A., Zahn, M., & Pascual-Leone, A. (2007). Transcranial direct current stimulation: A computer-based human model study. NeuroImage, 35(3), 1113–1124.

    Article  PubMed  Google Scholar 

  • Wagner, S., Rampersad, S. M., Aydin, U., Vorwerk, J., Oostendorp, T. F., Neuling, T., … Wolters, C. H. (2014b). Investigation of tDCS volume conduction effects in a highly realistic head model. Journal of Neural Engineering, 11(1), 016002.

    Article  PubMed  Google Scholar 

  • Wiethoff, S., Hamada, M., & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimulation, 7(3), 468–475.

    Article  PubMed  Google Scholar 

  • Windhoff, M., Opitz, A., & Thielscher, A. (2013). Electric field calculations in brain stimulation based on finite elements: An optimized processing pipeline for the generation and usage of accurate individual head models. Human Brain Mapping, 34(4), 923–935.

    Article  PubMed  Google Scholar 

  • Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., … Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031–1048.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro C. Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salvador, R., Truong, D.Q., Bikson, M., Opitz, A., Dmochowski, J., Miranda, P.C. (2019). Role of Computational Modeling for Dose Determination. In: Knotkova, H., Nitsche, M., Bikson, M., Woods, A. (eds) Practical Guide to Transcranial Direct Current Stimulation. Springer, Cham. https://doi.org/10.1007/978-3-319-95948-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95948-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95947-4

  • Online ISBN: 978-3-319-95948-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics