Skip to main content

A Comparison Study of Surrogate Model Based Preselection in Evolutionary Optimization

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10955))

Included in the following conference series:

Abstract

In evolutionary optimization, the purpose of preselection is to identify some promising solutions in a set of candidate offspring solutions. The surrogate model is a popular method employed in preselection. A surrogate model is built to approximate the original objective function and to estimate the fitness values of the candidate solutions. Based on the estimated fitness values, the promising solutions can be identified. This paper aims to study and compare the surrogate model based preselection strategies in evolutionary algorithms. Systematic experiments are conducted to study the performance of four surrogate models. The experimental results suggest the surrogate model based preselection can significantly improve the performance of evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polak, E.: Optimization: Algorithms and Consistent Approximations. Springer, New York (1997). https://doi.org/10.1007/978-1-4612-0663-7

    Book  MATH  Google Scholar 

  2. Lu, X.-F., Tang, K., Sendhoff, B., Yao, X.: A new self-adaptation scheme for differential evolution. Neurocomputing 146(C), 2–16 (2014)

    Article  Google Scholar 

  3. Mallipeddi, R., Suganthan, P.N.: Unit commitment - a survey and comparison of conventional and nature inspired algorithms. Int. J. Bio-Inspir. Comput. 6(2), 71–90 (2014)

    Article  Google Scholar 

  4. Back, T., Schwefel, H.-P.: Evolutionary computation: an overview. In: 1996 IEEE International Congress on Evolutionary Computation (CEC), pp. 20–29 (1996)

    Google Scholar 

  5. Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming. Genetic Algorithms. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  6. Cavicchio, D.J.: Adaptive search using simulated evolution. Unpublished doctoral dissertation, University of Michigan, Ann Arbor (1970)

    Google Scholar 

  7. Mahfoud, S.W.: Crowding and preselection revisited. In: Parallel Problem Solving from Nature (PPSN), pp. 27–36. Amsterdam Press, North-Holland (1992)

    Google Scholar 

  8. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15, 55–66 (2011)

    Article  Google Scholar 

  9. Li, Y., Zhou, A., Zhang, G.: An MOEA/D with multiple differential evolution mutation operators. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 397–404 (2014)

    Google Scholar 

  10. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft. Comput. 9(1), 3–12 (2003)

    Article  Google Scholar 

  11. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

    Article  Google Scholar 

  12. Zhang, J., Zhou, A., Zhang, G.: Preselection via classification: a case study on global optimization. Int. J. Bio-Inspir. Comput. (2018, accepted)

    Google Scholar 

  13. Lu, X., Tang, K., Yao, X.: Classification-assisted differential evolution for computationally expensive problems. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 1986–1993 (2011)

    Google Scholar 

  14. Emmerich, M., Giotis, A., Özdemir, M., Bäck, T., Giannakoglou, K.: Metamodel—assisted evolution strategies. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 361–370. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7_35

    Chapter  Google Scholar 

  15. El-beltagy, M.A., Keane, A.J.: Evolutionary optimization for computationally expensive problems using Gaussian processes. In: Arabnia, H. (ed.) Proceedings of International Conference on Artificial Intelligence IC-AI’2001. CSREA Press (2001)

    Google Scholar 

  16. Sun, C., Ding, J., Zeng, V., Jin, Y.: A fitness approximation assisted competitive swarm optimizer for large scale expensive optimization problems. Memetic Comput. 10(2), 123–134 (2018)

    Article  Google Scholar 

  17. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. Evol. Comput. 6(5), 481–494 (2002)

    Article  Google Scholar 

  18. Tenne, Y., Armfield, S.W.: A framework for memetic optimization using variable global and local surrogate models. Soft. Comput. 13(8), 781–793 (2009)

    Article  Google Scholar 

  19. Tabatabaei, M., Hakanen, J., Hartikainen, M., Miettinen, K., Sindhya, K.: A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods. Struct. Multidiscip. Opt. 52(1), 1–24 (2015)

    Article  MathSciNet  Google Scholar 

  20. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  21. Breiman, L., Friedman, J., Olshen, R., Stone, C.J.: Classification and regression trees. Biometrics 40(3), 17–23 (1984)

    MATH  Google Scholar 

  22. Liu, B., Zhang, Q., Gielen, G.G.E.: A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems. IEEE Trans. Evol. Comput. 18(2), 180–192 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grant No. 61731009, 61673180, and 61703382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, H., Zhang, J., Zhou, A. (2018). A Comparison Study of Surrogate Model Based Preselection in Evolutionary Optimization. In: Huang, DS., Jo, KH., Zhang, XL. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10955. Springer, Cham. https://doi.org/10.1007/978-3-319-95933-7_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95933-7_80

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95932-0

  • Online ISBN: 978-3-319-95933-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics