Predicting Microbe-Disease Association by Kernelized Bayesian Matrix Factorization

  • Sisi Chen
  • Dan Liu
  • Jia Zheng
  • Pingtao Chen
  • Xiaohua Hu
  • Xingpeng JiangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10955)


The study of microbe-disease associations can be utilized as a valuable material for understanding disease pathogenesis. Developing a highly accurate algorithm model for predicting disease-related microbes will provide a basis for targeted treatment of the disease. In this paper, we propose an approach based on Kernelized Bayesian Matrix Factorization (KBMF) to predict microbe-disease association, based on the Gaussian interaction profile kernel similarity for microbes and diseases. The prediction performance of the method was evaluated by five-fold cross validation. KBMF achieved reliable results which is better than several state-of-the-art methods with around 8% improvement of AUC. Furthermore, case studies have demonstrated the reliability of the method.


Microbe Matrix factorization Bayesian Biological network 



This research is supported by the National Natural Science Foundation of China (No. 61532008), the Excellent Doctoral Breeding Project of CCNU, the Self-determined Research Funds of CCNU from the Colleges’ Basic Research and Operation of MOE (No. CCNU16KFY04).


  1. 1.
    Holmes, E., Wijeyesekera, A., Taylor-Robinson, S.D., Nicholson, J.K.: The promise of metabolic phenotyping in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 12(8), 458–471 (2015)CrossRefGoogle Scholar
  2. 2.
    Ventura, M., O’Flaherty, S., Claesson, M.J., Turroni, F., Klaenhammer, T.R., van Sinderen, D., O’Toole, P.W.: Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat. Rev. Microbiol. 7(1), 61–71 (2009)CrossRefGoogle Scholar
  3. 3.
    Ettinger, G., MacDonald, K., Reid, G., Burton, J.P.: The influence of the human microbiome and probiotics on cardiovascular health. Gut Microbes 5(6), 719–728 (2014)CrossRefGoogle Scholar
  4. 4.
    Ma, W., Zhang, L., Zeng, P., Huang, C., Li, J., Geng, B., Yang, J., Kong, W., Zhou, X., Cui, Q.: An analysis of human microbe–disease associations. Briefings Bioinf. 18(1), 85–97 (2016)CrossRefGoogle Scholar
  5. 5.
    Huang, Z.A., Chen, X., Zhu, Z., Liu, H., Yan, G.Y., You, Z.H., Wen, Z.: PBHMDA: path-based human microbe-disease association prediction. Front. Microbiol. 8, 233 (2017)Google Scholar
  6. 6.
    Huang, Y.-A., You, Z.-H., Chen, X., Huang, Z.-A., Zhang, S., Yan, G.-Y.: Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model. J. Transl. Med. 15(1), 209 (2017)CrossRefGoogle Scholar
  7. 7.
    Shen, X., Chen, Y., Jiang, X., Hu, X., He, T., Yang, J.: Predicting disease-microbe association by random walking on the heterogeneous network. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 771–774. IEEE, December 2016Google Scholar
  8. 8.
    Zou, S., Zhang, J., Zhang, Z.: A novel approach for predicting microbe-disease associations by bi-random walk on the heterogeneous network. PLoS ONE 12(9), e0184394 (2017)CrossRefGoogle Scholar
  9. 9.
    Chen, X., Yan, G.Y.: Novel human lncRNA-disease association inference based on lncRNA expression profiles. Bioinformatics 29(20), 2617–2624 (2013)CrossRefGoogle Scholar
  10. 10.
    Gonen, M.: Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28(18), 2304–2310 (2012)CrossRefGoogle Scholar
  11. 11.
    Beal, M.J.: Variational Algorithms for Approximate Bayesian Inference. Ph.D. thesis, The Gatsby Computational Neuroscience Unit, University College London (2003)Google Scholar
  12. 12.
    Liu, Y., Wu, M., Miao, C., Zhao, P., Li, X.L.: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLoS Comput. Biol. 12(2), e1004760 (2016)CrossRefGoogle Scholar
  13. 13.
    Marri, P.R., Stern, D.A., Wright, A.L., Billheimer, D., Martinez, F.D.: Asthma-associated differences in microbial composition of induced sputum. J. Allergy Clin. Immunol. 131(2), pp. 346–352, e341–e343 (2013)CrossRefGoogle Scholar
  14. 14.
    Ciaccio, C.E., Kennedy, K., Barnes, C.S., Portnoy, J.M., Rosenwasser, L.J.: The home microbiome and childhood asthma. J. Allergy Clin. Immun. 133(2) AB70CrossRefGoogle Scholar
  15. 15.
    Yu, J., Jang, S.O., Kim, B.J., Song, Y.H., Kwon, J.W., Kang, M.J., Choi, W.A., Jung, H.D., Hong, S.J.: The effects of lactobacillus rhamnosus on the prevention of asthma in a murine model. Allergy Asthma Immunol. Res. 2(3), 199–205 (2010)CrossRefGoogle Scholar
  16. 16.
    Braga, E.G., Ananias, R.Z., Mussalem, J.S., Squaiella, C.C., Longhini, A.L.F., Mariano, M., Travassos, L.R., Longo-Maugéri, I.M.: Treatment with propionibacterium acnes modulates the late phase reaction of immediate hypersensitivity in mice. Immunol. Lett. 88(2), 163–169 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sisi Chen
    • 1
  • Dan Liu
    • 1
  • Jia Zheng
    • 1
  • Pingtao Chen
    • 2
  • Xiaohua Hu
    • 1
    • 3
  • Xingpeng Jiang
    • 1
    Email author
  1. 1.School of ComputerCentral China Normal UniversityWuhanChina
  2. 2.School of Physical SciencesUniversity of Science and Technology of ChinaHefeiChina
  3. 3.College of Computing and InformaticsDrexel UniversityPhiladelphiaUSA

Personalised recommendations