Skip to main content

Exploration and Exploitation of High Dimensional Biological Datasets Using a Wrapper Approach Based on Strawberry Plant Algorithm

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10955))

Included in the following conference series:

  • 2174 Accesses

Abstract

This paper presents a wrapper approach based on Strawberry Plant Algorithm (SPA) for gene selection in high dimension data classification problem by selecting the most relevant genes for each biological dataset. In order to perform an integrated exploration-exploitation approach to deal the near-optimal (small) gene subset problem obtained from high dimensional microarray data. First, a statistical filter is proposed for gene selection. After, a SPA is proposed to find the most informative genes from the previous gene selection, SPA is applied to explore and exploit new regions of this search and overall to overcome premature convergence. Empirical studies based in five public DNA-microarray datasets it is observed that our model gets the best performances using a smaller number of selected genes than other methods reported in the literature recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, S., Aorigele, Kong, W., Zeng, W., Hong, X.: Hybrid binary imperialist competition algorithm and tabu search approach for feature selection using gene expression data. BioMed Res. Int. 2016, 12 (2016)

    Google Scholar 

  2. Alshamlan, H., Badr, G., Alohali1, Y.: mRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. In: Hindawi Publishing Corporation BioMed Research International Volume (2015)

    Article  Google Scholar 

  3. Chuang, L.-Y., Yang, C.-H., Li, J.-C., Yang, C.-H.: A hybrid BPSOCGA approach for gene selection and classification of microarray data. J. Comput. Biol. 19(1), 68–82 (2012)

    Article  MathSciNet  Google Scholar 

  4. Elyasigomari, V., Lee, D.A., Screen, H.R.C., Shaheed, M.H.: Development of a two-stage gene selection method that incorporates a novel hybrid approach using the cuckoo optimization algorithm and harmony search for cancer classification. J. Biomed. Inf. 67, 11–20 (2017)

    Article  Google Scholar 

  5. Sharbaf, F.V., Mosafer, S., Moattar, M.H.: A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization. Genomics 107(6), 231–238 (2016)

    Article  Google Scholar 

  6. Lu, H., Chen, J., Yan, K., Jin, Q., Xue, Y., Gao, Z.: A hybrid feature selection algorithm for gene expression data classification. Neurocomputing 256, 56–62 (2017)

    Article  Google Scholar 

  7. Apolloni, J., Leguizamón, G., Alba, E.: Two hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments. Appl. Soft Comput. 38, 922–932 (2016)

    Article  Google Scholar 

  8. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Feature selection for high-dimensional data. Prog. Artif. Intell. 5(2), 18 (2016)

    Article  Google Scholar 

  9. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  10. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96, 6745–6750 (1999)

    Google Scholar 

  11. Gordon, G.J., Jensen, R.V., Ramaswamy, S., Richards, W.G., Sugarbaker, D.J., Bueno, R., et al.: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Can. Res. 17(62), 4963–4967 (2002)

    Google Scholar 

  12. Pomeroy, S.L., Tamayo, P., et al.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002)

    Article  Google Scholar 

  13. Singh, D., Febbo, P., Ross, K., Jackson, D., Manola, J., Ladd, C., Tamayo, P., Renshaw, A., D’Amico, A., Richie, J.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209 (2002)

    Article  Google Scholar 

  14. Dudoit, S., et al.: Comparison of discriminant methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 9, 77–87 (2002)

    Article  MathSciNet  Google Scholar 

  15. Tarek, S., Abd-Elwahab, R., Shoman, M.: Gene expression based cancer classification. Egypt. Inf. J. 18(3), 151–159 (2017)

    Article  Google Scholar 

  16. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2011)

    Google Scholar 

  17. Salhi, A., Fraga, E.: Nature-inspired optimisation approaches and the new plant propagation algorithm. In: Proceedings of 2011 International Conference on Numerical Analysis and Optimization (ICeMATH 2011), pp. K2-1–K2-8 (2011)

    Google Scholar 

  18. Merrikh-Bayat, F.: A Numerical Optimization Algorithm Inspired by the Strawberry Plant. arXiv preprint arXiv:1407.7399, pp. 10–36 (2014)

  19. Akyol, S., Alatas, B.: Plant intelligence based metaheuristic optimization algorithms. Artif. Intell. Rev. 45(4), 414–462 (2017)

    Google Scholar 

  20. Li, S., Tan, M.: Gene selection using hybrid particle swarm optimization and genetic algorithm. Soft. Comput. 12, 1039–1048 (2008)

    Article  Google Scholar 

  21. Ben-Dor, A., Bruhn, L., et al.: Tissue classification with gene expression profiles. J. Comput. Biol. 7(3–4), 559–583 (2000)

    Article  Google Scholar 

  22. Wang, Y., Makedon, F.S., Ford, J.C., Pearlman, J.: HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data. Bioinformatics 21(8), 1530–1537 (2005)

    Article  Google Scholar 

  23. Wan, S.-L., Li, X., et al.: Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction. Comput. Biol. Med. 40, 179–189 (2010)

    Article  Google Scholar 

  24. Wessels, L.F.A., Rain, J.T.M., et al.: Representation and classification for high-throughput data. In: Proceedings of the SPIE 4626, Biomedical Nanotechnology Architectures and Applications, vol. 4626, pp. 226–237 (2002)

    Google Scholar 

  25. Cho, S.-B., Won, H.-H.: Machine learning in DNA microarray analysis for cancer classification. In: Proceedings of the 1st Asia-Pacific bioinformatics conference on Bioinformatics, vol. 19, pp. 189–198 (2003)

    Google Scholar 

  26. Cho, S.-B., Won, H.-H.: Cancer classification using ensemble of neural networks with multiple significant gene subsets. Appl. Intell. 26(3), 243–250 (2007)

    Article  Google Scholar 

  27. Deb, K., Reddy, R.: Reliable classification of two-class cancer data using evolutionary algorithms. BioSystems 72(1), 111–129 (2003)

    Article  Google Scholar 

  28. Karimi, S., Farrokhnia, M.: Leukemia and small round blue cell tumor cancer detection using microarray gene expression data set: combining data dimension reduction and variable selection technique. Chemom. Intell. Lab. Syst. 139, 6–14 (2014)

    Article  Google Scholar 

  29. Tang, Y., Zhang, Y., Huang, Z.: Development of two-stage SVMRFE gene selection strategy for microarray expression data analysis. IEEE/ACM Trans. Comput. Biol. Bioinformat. 4(3), 365–381 (2007)

    Article  Google Scholar 

  30. Vinterbo, S.A., Kim, E.-Y., Ohno-Machao, L.: Small, fuzzy and interpretable gene expression based classifiers. Bioinformatics 21(9), 1964–1970 (2005)

    Article  Google Scholar 

  31. Chu, W., Ghahramani, Z., Falciani, F., Wild, D.L.: Biomarker discovery in microarray gene expression with Gaussian process. Bioinformatics 21(16), 3385–3393 (2005)

    Article  Google Scholar 

  32. Guan, Z., Zhao, H.: A semiparametric approach for marker gene selection based on gene expression data. Bioinformatics 24(4), 529–536 (2005)

    Article  Google Scholar 

  33. Hu, S., Rao, J.: Statistical redundancy testing for improved gene selection in cancer classification using microarray data. Cancer Informat. 2, 29–41 (2007)

    Google Scholar 

  34. Arevalillo, J.-M., Navarro, H.: A new approach for detecting bivariate interactions in high-dimensional data using quadratic discriminant analysis. In: Proceedings of the 9th International Workshop Data Mining Bioinformatics, pp. 1–7 (2010)

    Google Scholar 

  35. Wan, X., Gotoh, O.: Microarray-based cancer prediction using soft computing approach. Cancer Informat. 7, 123–139 (2009)

    Google Scholar 

  36. Bonilla-Huerta, E., et al.: Hybrid framework using multiple-filters and an embedded approach, for an efficient selection and classification of microarray data. IEEE/ACM Trans. Comput. Biol. Bioinf. 13(1), 12–26 (2016)

    Article  Google Scholar 

  37. Chen, D., et al.: Selecting genes by test statistics. J. Biomed. Biotechnol. 2, 132–138 (2005)

    Article  Google Scholar 

  38. Wang, S., et al.: Gene selection with rough sets for the molecular diagnosing of tumor based on support vector machines. In: Proceedings of the ICS, pp. 1368–1373 (2006)

    Google Scholar 

  39. Wang, S., Chen, H., Li, S.: Gene selection using neighborhood rough set from gene expression profiles. In: Proceedings of the International Conference on Computer Intelligent Security, pp. 959–963 (2007)

    Google Scholar 

  40. Luque-Baena, R.M., Urda, D., Subirats, J.L., Franco, L., Jerez, J.M.: Application of genetic algorithms and constructive neural networks for the analysis of microarray cancer data. Theoret. Biol. Med. Model. 11(Suppl. 1), S7 (2014)

    Article  Google Scholar 

  41. Vanitha, D.-A., Devarajb, D., Venkatesuluc, M.: Gene expression data classification using support vector machine and mutual information-based gene selection. Procedia Comput. Sci. 47, 13–21 (2015)

    Article  Google Scholar 

  42. Zhang, H., Wang, H., Dai, Z., et al.: Improving accuracy for cancer classification with a new algorithm for genes selection. BMC Bioinform. 13, 298 (2012)

    Article  Google Scholar 

  43. Gao, L., Ye, M., et al.: Hybrid method based on information gain and support vector machine for gene selection in cancer classification. Genomics Proteomics Bioinform. 15, 389–395 (2017)

    Article  Google Scholar 

  44. Mao, Z., Cai, W., Shao, X.: Hybrid method based on information gain and support vector machine for gene selection in cancer classification. J. Biomed. Inform. 46, 594–601 (2013)

    Article  Google Scholar 

  45. Luque-Baena, R.M., Urda, D., et al.: Robust signatures from microarray data using genetic algorithms enriched with biological pathway keywords. J. Biomed. Inform. 49, 32–44 (2014)

    Article  Google Scholar 

  46. Akadi, A.E., Amine, A., Ouardighi, A.E., Aboutajdine, D.: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper. Knowl. Inf. Syst. 26, 487–500 (2010)

    Article  Google Scholar 

  47. Nanni, L., Brahnam, S., Lumini, A.: Combining multiple approaches for gene microarray classification. Bioinformatics 28(8), 1151–1157 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmundo Bonilla-Huerta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonilla-Huerta, E., Morales-Caporal, R., Arjona-López, M.A. (2018). Exploration and Exploitation of High Dimensional Biological Datasets Using a Wrapper Approach Based on Strawberry Plant Algorithm. In: Huang, DS., Jo, KH., Zhang, XL. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10955. Springer, Cham. https://doi.org/10.1007/978-3-319-95933-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95933-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95932-0

  • Online ISBN: 978-3-319-95933-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics