Exploration and Exploitation of High Dimensional Biological Datasets Using a Wrapper Approach Based on Strawberry Plant Algorithm

  • Edmundo Bonilla-HuertaEmail author
  • Roberto Morales-Caporal
  • M. Antonio Arjona-López
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10955)


This paper presents a wrapper approach based on Strawberry Plant Algorithm (SPA) for gene selection in high dimension data classification problem by selecting the most relevant genes for each biological dataset. In order to perform an integrated exploration-exploitation approach to deal the near-optimal (small) gene subset problem obtained from high dimensional microarray data. First, a statistical filter is proposed for gene selection. After, a SPA is proposed to find the most informative genes from the previous gene selection, SPA is applied to explore and exploit new regions of this search and overall to overcome premature convergence. Empirical studies based in five public DNA-microarray datasets it is observed that our model gets the best performances using a smaller number of selected genes than other methods reported in the literature recently.


Strawberry Plant Algorithm Wrapper Gene selection SVM 


  1. 1.
    Wang, S., Aorigele, Kong, W., Zeng, W., Hong, X.: Hybrid binary imperialist competition algorithm and tabu search approach for feature selection using gene expression data. BioMed Res. Int. 2016, 12 (2016)Google Scholar
  2. 2.
    Alshamlan, H., Badr, G., Alohali1, Y.: mRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. In: Hindawi Publishing Corporation BioMed Research International Volume (2015)CrossRefGoogle Scholar
  3. 3.
    Chuang, L.-Y., Yang, C.-H., Li, J.-C., Yang, C.-H.: A hybrid BPSOCGA approach for gene selection and classification of microarray data. J. Comput. Biol. 19(1), 68–82 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Elyasigomari, V., Lee, D.A., Screen, H.R.C., Shaheed, M.H.: Development of a two-stage gene selection method that incorporates a novel hybrid approach using the cuckoo optimization algorithm and harmony search for cancer classification. J. Biomed. Inf. 67, 11–20 (2017)CrossRefGoogle Scholar
  5. 5.
    Sharbaf, F.V., Mosafer, S., Moattar, M.H.: A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization. Genomics 107(6), 231–238 (2016)CrossRefGoogle Scholar
  6. 6.
    Lu, H., Chen, J., Yan, K., Jin, Q., Xue, Y., Gao, Z.: A hybrid feature selection algorithm for gene expression data classification. Neurocomputing 256, 56–62 (2017)CrossRefGoogle Scholar
  7. 7.
    Apolloni, J., Leguizamón, G., Alba, E.: Two hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments. Appl. Soft Comput. 38, 922–932 (2016)CrossRefGoogle Scholar
  8. 8.
    Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Feature selection for high-dimensional data. Prog. Artif. Intell. 5(2), 18 (2016)CrossRefGoogle Scholar
  9. 9.
    Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)CrossRefGoogle Scholar
  10. 10.
    Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96, 6745–6750 (1999)Google Scholar
  11. 11.
    Gordon, G.J., Jensen, R.V., Ramaswamy, S., Richards, W.G., Sugarbaker, D.J., Bueno, R., et al.: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Can. Res. 17(62), 4963–4967 (2002)Google Scholar
  12. 12.
    Pomeroy, S.L., Tamayo, P., et al.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002)CrossRefGoogle Scholar
  13. 13.
    Singh, D., Febbo, P., Ross, K., Jackson, D., Manola, J., Ladd, C., Tamayo, P., Renshaw, A., D’Amico, A., Richie, J.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209 (2002)CrossRefGoogle Scholar
  14. 14.
    Dudoit, S., et al.: Comparison of discriminant methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 9, 77–87 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tarek, S., Abd-Elwahab, R., Shoman, M.: Gene expression based cancer classification. Egypt. Inf. J. 18(3), 151–159 (2017)CrossRefGoogle Scholar
  16. 16.
    Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2011)Google Scholar
  17. 17.
    Salhi, A., Fraga, E.: Nature-inspired optimisation approaches and the new plant propagation algorithm. In: Proceedings of 2011 International Conference on Numerical Analysis and Optimization (ICeMATH 2011), pp. K2-1–K2-8 (2011)Google Scholar
  18. 18.
    Merrikh-Bayat, F.: A Numerical Optimization Algorithm Inspired by the Strawberry Plant. arXiv preprint arXiv:1407.7399, pp. 10–36 (2014)
  19. 19.
    Akyol, S., Alatas, B.: Plant intelligence based metaheuristic optimization algorithms. Artif. Intell. Rev. 45(4), 414–462 (2017)Google Scholar
  20. 20.
    Li, S., Tan, M.: Gene selection using hybrid particle swarm optimization and genetic algorithm. Soft. Comput. 12, 1039–1048 (2008)CrossRefGoogle Scholar
  21. 21.
    Ben-Dor, A., Bruhn, L., et al.: Tissue classification with gene expression profiles. J. Comput. Biol. 7(3–4), 559–583 (2000)CrossRefGoogle Scholar
  22. 22.
    Wang, Y., Makedon, F.S., Ford, J.C., Pearlman, J.: HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data. Bioinformatics 21(8), 1530–1537 (2005)CrossRefGoogle Scholar
  23. 23.
    Wan, S.-L., Li, X., et al.: Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction. Comput. Biol. Med. 40, 179–189 (2010)CrossRefGoogle Scholar
  24. 24.
    Wessels, L.F.A., Rain, J.T.M., et al.: Representation and classification for high-throughput data. In: Proceedings of the SPIE 4626, Biomedical Nanotechnology Architectures and Applications, vol. 4626, pp. 226–237 (2002)Google Scholar
  25. 25.
    Cho, S.-B., Won, H.-H.: Machine learning in DNA microarray analysis for cancer classification. In: Proceedings of the 1st Asia-Pacific bioinformatics conference on Bioinformatics, vol. 19, pp. 189–198 (2003)Google Scholar
  26. 26.
    Cho, S.-B., Won, H.-H.: Cancer classification using ensemble of neural networks with multiple significant gene subsets. Appl. Intell. 26(3), 243–250 (2007)CrossRefGoogle Scholar
  27. 27.
    Deb, K., Reddy, R.: Reliable classification of two-class cancer data using evolutionary algorithms. BioSystems 72(1), 111–129 (2003)CrossRefGoogle Scholar
  28. 28.
    Karimi, S., Farrokhnia, M.: Leukemia and small round blue cell tumor cancer detection using microarray gene expression data set: combining data dimension reduction and variable selection technique. Chemom. Intell. Lab. Syst. 139, 6–14 (2014)CrossRefGoogle Scholar
  29. 29.
    Tang, Y., Zhang, Y., Huang, Z.: Development of two-stage SVMRFE gene selection strategy for microarray expression data analysis. IEEE/ACM Trans. Comput. Biol. Bioinformat. 4(3), 365–381 (2007)CrossRefGoogle Scholar
  30. 30.
    Vinterbo, S.A., Kim, E.-Y., Ohno-Machao, L.: Small, fuzzy and interpretable gene expression based classifiers. Bioinformatics 21(9), 1964–1970 (2005)CrossRefGoogle Scholar
  31. 31.
    Chu, W., Ghahramani, Z., Falciani, F., Wild, D.L.: Biomarker discovery in microarray gene expression with Gaussian process. Bioinformatics 21(16), 3385–3393 (2005)CrossRefGoogle Scholar
  32. 32.
    Guan, Z., Zhao, H.: A semiparametric approach for marker gene selection based on gene expression data. Bioinformatics 24(4), 529–536 (2005)CrossRefGoogle Scholar
  33. 33.
    Hu, S., Rao, J.: Statistical redundancy testing for improved gene selection in cancer classification using microarray data. Cancer Informat. 2, 29–41 (2007)Google Scholar
  34. 34.
    Arevalillo, J.-M., Navarro, H.: A new approach for detecting bivariate interactions in high-dimensional data using quadratic discriminant analysis. In: Proceedings of the 9th International Workshop Data Mining Bioinformatics, pp. 1–7 (2010)Google Scholar
  35. 35.
    Wan, X., Gotoh, O.: Microarray-based cancer prediction using soft computing approach. Cancer Informat. 7, 123–139 (2009)Google Scholar
  36. 36.
    Bonilla-Huerta, E., et al.: Hybrid framework using multiple-filters and an embedded approach, for an efficient selection and classification of microarray data. IEEE/ACM Trans. Comput. Biol. Bioinf. 13(1), 12–26 (2016)CrossRefGoogle Scholar
  37. 37.
    Chen, D., et al.: Selecting genes by test statistics. J. Biomed. Biotechnol. 2, 132–138 (2005)CrossRefGoogle Scholar
  38. 38.
    Wang, S., et al.: Gene selection with rough sets for the molecular diagnosing of tumor based on support vector machines. In: Proceedings of the ICS, pp. 1368–1373 (2006)Google Scholar
  39. 39.
    Wang, S., Chen, H., Li, S.: Gene selection using neighborhood rough set from gene expression profiles. In: Proceedings of the International Conference on Computer Intelligent Security, pp. 959–963 (2007)Google Scholar
  40. 40.
    Luque-Baena, R.M., Urda, D., Subirats, J.L., Franco, L., Jerez, J.M.: Application of genetic algorithms and constructive neural networks for the analysis of microarray cancer data. Theoret. Biol. Med. Model. 11(Suppl. 1), S7 (2014)CrossRefGoogle Scholar
  41. 41.
    Vanitha, D.-A., Devarajb, D., Venkatesuluc, M.: Gene expression data classification using support vector machine and mutual information-based gene selection. Procedia Comput. Sci. 47, 13–21 (2015)CrossRefGoogle Scholar
  42. 42.
    Zhang, H., Wang, H., Dai, Z., et al.: Improving accuracy for cancer classification with a new algorithm for genes selection. BMC Bioinform. 13, 298 (2012)CrossRefGoogle Scholar
  43. 43.
    Gao, L., Ye, M., et al.: Hybrid method based on information gain and support vector machine for gene selection in cancer classification. Genomics Proteomics Bioinform. 15, 389–395 (2017)CrossRefGoogle Scholar
  44. 44.
    Mao, Z., Cai, W., Shao, X.: Hybrid method based on information gain and support vector machine for gene selection in cancer classification. J. Biomed. Inform. 46, 594–601 (2013)CrossRefGoogle Scholar
  45. 45.
    Luque-Baena, R.M., Urda, D., et al.: Robust signatures from microarray data using genetic algorithms enriched with biological pathway keywords. J. Biomed. Inform. 49, 32–44 (2014)CrossRefGoogle Scholar
  46. 46.
    Akadi, A.E., Amine, A., Ouardighi, A.E., Aboutajdine, D.: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper. Knowl. Inf. Syst. 26, 487–500 (2010)CrossRefGoogle Scholar
  47. 47.
    Nanni, L., Brahnam, S., Lumini, A.: Combining multiple approaches for gene microarray classification. Bioinformatics 28(8), 1151–1157 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Edmundo Bonilla-Huerta
    • 1
    Email author
  • Roberto Morales-Caporal
    • 1
  • M. Antonio Arjona-López
    • 2
  1. 1.Tecnológico Nacional de MéxicoInstituto Tecnológico deApizacoApizacoMexico
  2. 2.Tecnológico Nacional de MéxicoInstituto Tecnológico La LagunaTorreónMexico

Personalised recommendations